Covariant Vector meson-Vector meson Interactions and Dynamically Generated Resonances

Dilege Gülmez

HISKP, Universität Bonn
$15^{\text {th }}$ International Workshop on Meson Physics
Uniwersytet Jagielloński, Kraków June 7-12, 2018

Overview

(1) Formalism
(2) $\rho \rho$ Interactions

The on-shell Bethe-Salpeter Equation (BSE) The N / D method
(3) The extension to SU (3)

The BSE method in coupled channels Single channels Coupled Channels
(4) Results and Summary

The Hidden Gauge Formalism Lagrangian \& On-Shell BSE

\square Vector-Meson Interactions:
$\mathcal{L}_{4 V}=\frac{g^{2}}{2}\left\langle V_{\mu} V_{v} V^{\mu} V^{v}-V_{\mu} V^{\mu} V_{v} V^{v}\right\rangle$
$\mathcal{L}_{3 V}=i g\left\langle\left(\partial_{\mu} V_{v}-\partial_{v} V_{\mu}\right) V^{\mu} V^{v}\right\rangle$

The on-shell BSE:
$T(s)=[1-V(s) \cdot G(s)]^{-1} \cdot V(s)$
$G_{i i}(s)=i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{\left(q^{2}-M_{1}^{2}+i \epsilon\right)\left((P-q)^{2}-M_{2}^{2}+i \epsilon\right)}$
$V=$

Partial-wave Interaction Kernels

DG, Meißner, Oller, Eur. Phys. J. C 77 (2017) no.7, arXiv:1611.00168 [hep-ph] Molina, Nicmorus, Oset, Phys. Rev. D 78 (2008) 114018, arXiv:0809.2233 [hep-ph]

\triangleright The LHC starts at $\sqrt{3 m_{\rho}^{2}}=1343 \mathrm{MeV}$.
\triangleright A pole is found at 1467 (1491) MeV.
\triangleright It is associated with the $f_{0}(1370)$.
\triangleright The width: $200-500 \mathrm{MeV}$ in PDG.

\triangleright No/A pole is found (at 1255 MeV).
\triangleright It is associated with the $f_{2}(1270)$.
$\triangleright \quad f_{2}(1270)$ fits very well within the ideal P-wave $q \bar{q}$ nonet (analyses of the high-statistics Belle data ${ }^{a}$, the Regge theory ${ }^{b}$).
\triangleright Far away from the $\rho \rho$ threshold (1551 MeV).

[^0]${ }^{\text {b }}$ Ananthanarayan, Colangelo, Gasser, Leutwyler, Phys. Rept. 353 (2001) 207, arXiv:0005297 [hep-ph]

Partial-wave Interaction Kernels

DG, Meißner, Oller, Eur. Phys. J. C 77 (2017) no.7, arXiv:1611.00168 [hep-ph]
Molina, Nicmorus, Oset, Phys. Rev. D 78 (2008) 114018, arXiv:0809.2233 [hep-ph]

Importance of LHCs:
\triangleright The $N N$ scattering ${ }^{a}$: One pion exchange starts at $p^{2}=-m_{\pi}^{2} \rightarrow s<4\left(m_{N}^{2}-m_{\pi}^{2} / 4\right)$ and two pion exchange starts at $p^{2}=-4 m_{\pi}^{2} \rightarrow s<4\left(m_{N}^{2}-m_{\pi}^{2}\right)$.
\triangleright Apply this to the $\rho \rho$ scattering (m_{π} and m_{N} are to be replaced by m_{ρ}).
\triangleright lgnoring the $\rho \rho$ exchange means ignoring LHCs of OPE like term of the interaction.
\triangleright The dynamics of low-energy $N N$ scattering has the highest contribution from OPE.

\triangleright No/A pole is found (at 1255 MeV).
\triangleright It is associated with the $f_{2}(1270)$.
$\triangleright f_{2}(1270)$ fits very well within the ideal P-wave $q \bar{q}$ nonet (analyses of the high-statistics Belle data, the Regge theory).
\triangleright Far away from the $\rho \rho$ threshold (1551 MeV).

[^1]
Partial-wave Interaction Kernels

Red Circle: Bound State ($a>0$), Green Square: Virtual state $(a<0)$
\triangleright The effective range is determined by:
$T(s)=\frac{8 \pi \sqrt{s}}{-1 / a+r_{0} \mathbf{p}^{2}-i \mathbf{p}}$.
$\triangleright r_{0}$ is proportional to $d\left(\sqrt{s} T^{-1}\right) /\left.d E\right|_{E=\sqrt{s_{\mathrm{t}}}}$.
\triangleright As the slope of the potential increases, r_{0} decreases.
\triangleright Therefore, the effective range for the scalar sector is much larger than the tensor sector.
$\triangleright \mathbf{p}=\left\{\begin{array}{l}\frac{i}{a}+\frac{i r_{0}}{a^{2}}+\ldots \\ \frac{i}{r_{0}}-\frac{i}{a}-\frac{i r_{0}}{a^{2}}+\ldots\end{array}\right.$
\triangleright In the non-relativistic approach, both sectors have the same energy-dependence, thus, positive effective range (follows blue solid lines: $r_{0} a>0$).
\triangleright In the covariant form, the tensor sector has a negative effective range (follows purple dashed lines: $r_{0} a<0$).

$\triangleright \mathrm{No} / \mathrm{A}$ pole is found (at 1255 MeV).
\triangleright It is associated with the $f_{2}(1270)$.
$\triangleright f_{2}(1270)$ fits very well within the ideal P-wave $q \bar{q}$ nonet (analyses of the high-statistics Belle data, the Regge theory).
\triangleright Far away from the $\rho \rho$ threshold (1551 MeV).

The N/D Method

$\triangleright \quad T=N(s) / D(s)$.
$\triangleright \quad N$ has only LHCs and D has only RHCs.
$\triangleright D=0$ corresponds to resonances or bound-states.
$\triangleright N(s)=V(s)$ (first iterated solution).
$\triangleright D(s)$ diverges as s^{2}. Therefore, three subtractions in the dispersion relation for $\mathrm{D}(\mathrm{s})$:

$$
\begin{aligned}
D(s) & =\gamma_{0}+\gamma_{1}\left(s-s_{\mathrm{th}}\right)+\frac{1}{2} \gamma_{2}\left(s-s_{\mathrm{t} h}\right)^{2} \\
& +\frac{\left(s-s_{\mathrm{th}}\right) s^{2}}{\pi} \int_{s_{\mathrm{t} h}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right) V^{(J l)}\left(s^{\prime}\right)}{\left(s^{\prime}-s_{\mathrm{t} h}\right)\left(s^{\prime}-s\right)\left(s^{\prime}\right)^{2}} .
\end{aligned}
$$

\triangleright Matching condition in the threshold region up to $\mathcal{O}\left(s^{3}\right)$:
$\gamma_{0}+\gamma_{1}\left(s-s_{t h}\right)+\frac{1}{2} \gamma_{2}\left(s-s_{s_{t h}}\right)^{2}$
$=1-V(s) G_{C}(s)-\frac{\left(s-s_{\mathrm{th}}\right) s^{2}}{\pi} \int_{s_{\mathrm{t} h}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right) V\left(s^{\prime}\right)}{\left(s^{\prime}-s_{\mathrm{th}}\right)\left(s^{\prime}-s\right)\left(s^{\prime}\right)^{2}}$

The N/D Method

$\triangleright \quad T=N(s) / D(s)$.
$\triangleright \quad N$ has only LHCs and D has only RHCs.
$\triangleright D=0$ corresponds to resonances or bound-states.
$\triangleright N(s)=V(s)$ (first iterated solution).
$\triangleright D(s)$ diverges as s^{2}. Therefore, three subtractions in the dispersion relation for $D(s)$:

$$
\begin{aligned}
D(s) & =\gamma_{0}+\gamma_{1}\left(s-s_{\mathrm{t} h}\right)+\frac{1}{2} \gamma_{2}\left(s-s_{\mathrm{t} h}\right)^{2} \\
& +\frac{\left(s-s_{\mathrm{th}}\right) s^{2}}{\pi} \int_{s_{\mathrm{t} h}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right) V^{(J l)}\left(s^{\prime}\right)}{\left(s^{\prime}-s_{\mathrm{t} h}\right)\left(s^{\prime}-s\right)\left(s^{\prime}\right)^{2}} .
\end{aligned}
$$

\triangleright Matching condition in the threshold region up to $\mathcal{O}\left(s^{3}\right)$:
$\gamma_{0}+\gamma_{1}\left(s-s_{t h}\right)+\frac{1}{2} \gamma_{2}\left(s-s_{s_{t h}}\right)^{2}$
$=1-V(s) G_{C}(s)-\frac{\left(s-s_{\mathrm{th}}\right) s^{2}}{\pi} \int_{s_{\mathrm{t} h}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right) V\left(s^{\prime}\right)}{\left(s^{\prime}-s_{\mathrm{th}}\right)\left(s^{\prime}-s\right)\left(s^{\prime}\right)^{2}}$

The BSE approach in coupled channels

DG, Du, Guo, Meißner, Wang, Preliminary Results

In coupled channel calculations, g is evaluated with the average mass of vector mesons ($g=4.596$).
\square The LHC overlaps with the RHC.

The comparison of the $\operatorname{Det}(I-V \cdot G)$ in the single and coupled channel isoscalar scalar channel:No pole is found in the coupled channe!!The on-shell BSE method is not valid for coupled channels.

Single channels in $S U(3)$ (BSE)

\square Single channels in $S U(3): I=2(\rho \rho), I=3 / 2\left(K^{*} K^{*}\right), I=1\left(K^{*} K^{*}\right), I=0\left(K^{*} K^{*}\right)$, and $(I, J)=(0,1)\left(K^{*} \bar{K}^{*}\right)$.
\square Poles: 1 pole in $(I, J)=(0,1)\left(K^{*} K^{*}\right)$, and 2 poles in $(0,1)\left(K^{*} \bar{K}^{*}\right)$.
\square The pole is an artefact of the LHC.It is the same scenario for $(0,1)\left(K^{*} K^{*}\right)$.
\square The second pole is sensitive to the cutoff.
\square
For $g=M_{\rho} / f$, the pole is virtual for $q_{\text {max }}<1.03 \mathrm{GeV}$.

Single channels in $S U(3)(N / D)$

The second pole behaviour, in $K^{*} \bar{K}^{*}$, does not change.One of the LHC artefacts disappears where the other moves deeper on the real axis.

\square We have found three resonance poles on the $2^{\text {nd }}$ R.S. in $(2,2),(3 / 2,2),(1,2)$.In the tensor sector, matching does not work well for the $2^{\text {nd }}$ R.S. .

Coupled Channels (N/D)

$\square \quad$ The $(0,0)$ pole is re-established for the coupled channel.Far away from $K^{*} \bar{K}^{*}$ or $\phi \phi$ threshold? $\rho \rho$ dominates.A resonance pole is found at $1.68 \pm 0.2 i \mathrm{GeV} \rightarrow f_{0}(1710)$. $K^{*} \bar{K}^{*}$ dominates.In conclusion, the results are reproducible close to the threshold.

Results and Summary

Major	$I^{G}\left(J^{P C}\right)$	Pole positions $[\mathrm{GeV}]$	Pole positions $[\mathrm{GeV}]$	PDG	Mass $[\mathrm{GeV}]$
$\rho \rho$	$0^{+}\left(0^{++}\right)$	$[1.41-1.50]$	1.51	$f_{0}(1370)$	$[1.2-1.5]$
$K^{*} \bar{K}^{*}$	$0^{+}\left(0^{++}\right)$	$[1.56-1.73]$	1.73	$f_{0}(1710)$	$[1.72-1.73]$
$K^{*} \bar{K}^{*}$	$0^{-}\left(1^{+-}\right)$	$[1.77-1.78]$	1.80	-	-
$\rho \rho$	$0^{+}\left(2^{++}\right)$	-	1.28	$f_{2}(1270)$	$[1.28]$
$K^{*} \bar{K}^{*}$	$0^{+}\left(2^{++}\right)$	-	1.53	$f_{2}^{\prime}(1525)$	$[1.52-1.53]$
$K^{*} \bar{K}^{*}$	$1^{-}\left(0^{++}\right)$	-	1.78	-	-
$\rho \rho$	$1^{+}\left(1^{+-}\right)$	$[1.44-1.50]$	1.68	-	-
$K^{*} \bar{K}^{*}$	$1^{-}\left(2^{++}\right)$	-	1.57	-	-
ρK^{*}	$1 / 2\left(0^{+}\right)$	$[1.58-1.66]$	1.64	-	-
ρK^{*}	$1 / 2\left(1^{+}\right)$	$[1.86-1.92]$	1.74	$K_{1}(1650) ?$	$[1.62-1.72]$
ρK^{*}	$1 / 2\left(2^{+}\right)$	-	1.43	$K_{2}^{*}(1430)$	$[1.42-1.43]$

\square A more careful treatment is needed, especially away from the threshold.
\square LHCs are treated perturbatively. A conclusive approach would be the full N / D method.

Thank you for your attention!

[^0]: ${ }^{a}$ Dai, Pennington, Phys. Rev. D 90 (2014) 036004, arXiv: 1404.7524 [hep-ph]

[^1]: ${ }^{a}$ Guo, Oller, Rios, Phys. Rev. C 89 (2014) 014002, arXiv:1305.5790 [hep-th]

