Covariant Vector meson-Vector meson Interactions and Dynamically Generated Resonances

Dilege Gülmez HISKP, Universität Bonn

15th International Workshop on Meson Physics Uniwersytet Jagielloński, Kraków June 7-12, 2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Overview

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Formalism

2 $\rho\rho$ Interactions

The on-shell Bethe-Salpeter Equation (BSE) The N/D method

3 The extension to SU(3)

The BSE method in coupled channels Single channels Coupled Channels

A Results and Summary

The Hidden Gauge Formalism Lagrangian & On-Shell BSE

$$\begin{array}{c} \square \text{ Vector-Meson Interactions:} \\ \mathcal{L}_{4V} = \frac{g^2}{2} \langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\mu} V^{\mu} V_{\nu} V^{\nu} \rangle \\ \mathcal{L}_{3V} = ig \langle (\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \rangle \end{array}$$

$$\begin{array}{l} \square \text{ The on-shell BSE:} \\ T(s) = [1 - V(s) \cdot G(s)]^{-1} \cdot V(s) \\ G_{ii}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{(q^2 - M_1^2 + i\epsilon)((P-q)^2 - M_2^2 + i\epsilon)} \end{array}$$

(ロ)、

Partial-wave Interaction Kernels

DG, Meißner, Oller, Eur. Phys. J. C 77 (2017) no.7, arXiv:1611.00168 [hep-ph] Molina, Nicmorus, Oset, Phys. Rev. D 78 (2008) 114018, arXiv:0809.2233 [hep-ph]

- \triangleright It is associated with the $f_0(1370)$.
- $\,\triangleright\,\,$ The width: 200 500 MeV in PDG.

- ▷ No/A pole is found (at 1255 MeV).
- ▷ It is associated with the $f_2(1270)$.
- ▷ f₂(1270) fits very well within the ideal P-wave qq̄ nonet (analyses of the high-statistics Belle data^a, the Regge theory^b).
- \triangleright Far away from the $\rho\rho$ threshold (1551 MeV).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

^{*}Dai, Pennington, Phys. Rev. D 90 (2014) 036004, arXiv:1404.7524 [hep-ph]

^bAnanthanarayan, Colangelo, Gasser, Leutwyler, Phys. Rept. 353 (2001) 207, arXiv:0005297 [hep-ph]

Partial-wave Interaction Kernels

DG, Meißner, Oller, Eur. Phys. J. C 77 (2017) no.7, arXiv:1611.00168 [hep-ph] Molina, Nicmorus, Oset, Phys. Rev. D 78 (2008) 114018, arXiv:0809.2233 [hep-ph]

- ▷ Apply this to the $\rho\rho$ scattering (m_{π} and m_N are to be replaced by m_{ρ}).
- \triangleright Ignoring the $\rho\rho$ exchange means ignoring LHCs of OPE like term of the interaction.
- The dynamics of low-energy NN scattering has the highest contribution from OPE.

- No/A pole is found (at 1255 MeV).
- It is associated with the f₂(1270).
- ▷ f₂(1270) fits very well within the ideal P-wave qq̄ nonet (analyses of the high-statistics Belle data, the Regge theory).

・ コット (雪) (小田) (コット 日)

 \triangleright Far away from the $\rho\rho$ threshold (1551 MeV).

⁴Guo, Oller, Ríos, Phys. Rev. C 89 (2014) 014002, arXiv:1305.5790 [hep-th]

Partial-wave Interaction Kernels

Red Circle: Bound State (a > 0), Green Square: Virtual state (a < 0)

- > The effective range is determined by:
 - $T(s) = \frac{8\pi\sqrt{s}}{-1/a + r_0 \mathbf{p}^2 i\mathbf{p}}.$
- $\Rightarrow r_0 \text{ is proportional to } d(\sqrt{s}T^{-1})/dE\Big|_{E=\sqrt{s_{th}}}$
- \triangleright As the slope of the potential increases, r_0 decreases.
- ▷ Therefore, the effective range for the scalar sector is much larger than the tensor sector.

 $\triangleright \quad \mathbf{p} = \begin{cases} \frac{i}{a} + \frac{ir_0}{a^2} + \dots \\ \frac{i}{r_0} - \frac{i}{a} - \frac{ir_0}{a^2} + \dots \end{cases}$

- ▷ In the non-relativistic approach, both sectors have the same energy-dependence, thus, positive effective range (follows blue solid lines: $r_0 a > 0$).
- ▷ In the covariant form, the tensor sector has a negative effective range (follows purple dashed lines: $r_0 a < 0$).

- ▷ No/A pole is found (at 1255 MeV).
- \triangleright It is associated with the $f_2(1270)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \triangleright Far away from the $\rho\rho$ threshold (1551 MeV).

The N/D Method

- $\triangleright \quad T = N(s)/D(s).$
- ▷ N has only LHCs and D has only RHCs.
- \triangleright D = 0 corresponds to resonances or bound-states.
- $\triangleright \quad N(s) = V(s)$ (first iterated solution).
- \triangleright D(s) diverges as s^2 . Therefore, three subtractions in the dispersion relation for D(s):

$$\begin{split} D(s) &= \gamma_0 + \gamma_1 (s - s_{th}) + \frac{1}{2} \gamma_2 (s - s_{th})^2 \\ &+ \frac{(s - s_{th})s^2}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\rho(s') \, V^{(JJ)}(s')}{(s' - s_{th})(s' - s)(s')^2} \,. \end{split}$$

 \triangleright Matching condition in the threshold region up to $\mathcal{O}(s^3)$:

$$\begin{split} \gamma_0 + \gamma_1(s - s_{th}) + \frac{1}{2} \gamma_2(s - s_{s_{th}})^2 \\ = 1 - V(s)G_c(s) - \frac{(s - s_{th})s^2}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\rho(s')V(s')}{(s' - s_{th})(s' - s)(s')^2} \end{split}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

The N/D Method

- $\triangleright \quad T = N(s)/D(s).$
- ▷ N has only LHCs and D has only RHCs.
- \triangleright D = 0 corresponds to resonances or bound-states.
- $\triangleright \quad N(s) = V(s)$ (first iterated solution).
- \triangleright D(s) diverges as s^2 . Therefore, three subtractions in the dispersion relation for D(s):

$$\begin{split} D(s) &= \gamma_0 + \gamma_1 (s - s_{th}) + \frac{1}{2} \gamma_2 (s - s_{th})^2 \\ &+ \frac{(s - s_{th})s^2}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\rho(s') \, V^{(JJ)}(s')}{(s' - s_{th})(s' - s)(s')^2} \, . \end{split}$$

 \triangleright Matching condition in the threshold region up to $\mathcal{O}(s^3)$:

$$\begin{split} &\gamma_0 + \gamma_1(s - s_{th}) + \frac{1}{2}\gamma_2(s - s_{s_{th}})^2 \\ &= 1 - V(s)G_c(s) - \frac{(s - s_{th})s^2}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\rho(s')V(s')}{(s' - s_{th})(s' - s)(s')^2} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The BSE approach in coupled channels

DG, Du, Guo, Meißner, Wang, Preliminary Results

 \Box In coupled channel calculations, g is evaluated with the average mass of vector mesons (g = 4.596).

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Single channels in SU(3) (BSE)

□ Single channels in SU(3): $I = 2(\rho\rho)$, $I = 3/2(K^*K^*)$, $I = 1(K^*K^*)$, $I = 0(K^*K^*)$, and $(I, J) = (0, 1)(K^*\overline{K}^*)$.

□ Poles: 1 pole in $(I, J) = (0, 1) (K^* K^*)$, and 2 poles in $(0, 1) (K^* \overline{K}^*)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Single channels in SU(3) (N/D)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Coupled Channels (N/D)

- □ The (0,0) pole is re-established for the coupled channel.
- □ Far away from $K^*\overline{K}^*$ or $\phi\phi$ threshold? $\rho\rho$ dominates.

In conclusion, the results are reproducible close to the threshold.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Results and Summary

DG, Du, Guo, Meißner, Wang, Preliminary results Geng, Oset, Phys. Rev. D **79** (2009) 074009, arXiv:0812.1199[hep-ph]

Major	$ I^{G}(J^{FC})$	Pole positions [GeV]	Pole positions [GeV]	PDG	Mass[GeV]
ρρ	0+(0++)	[1.41 – 1.50]	1.51	f ₀ (1370)	[1.2 – 1.5]
$K^*\overline{K}^*$	0+(0++)	[1.56 - 1.73]	1.73	f ₀ (1710)	[1.72 - 1.73]
$K^*\overline{K}^*$	0-(1+-)	[1.77 – 1.78]	1.80	-	-
ρρ	0+(2++)	_	1.28	f ₂ (1270)	[1.28]
$K^*\overline{K}^*$	0+(2++)	-	1.53	<i>f</i> ₂ ′(1525)	[1.52 - 1.53]
$K^*\overline{K}^*$	1-(0++)	-	1.78	-	-
ρρ	1+(1+-)	[1.44 - 1.50]	1.68	-	-
$K^*\overline{K}^*$	1-(2++)	-	1.57	-	_
ρK^*	1/2(0+)	[1.58 - 1.66]	1.64	-	-
ρK*	1/2(1+)	[1.86 - 1.92]	1.74	K ₁ (1650)?	[1.62 - 1.72]
ρK^*	1/2(2+)	-	1.43	K ₂ *(1430)	[1.42 - 1.43]

The on-shell BSE does not provide the correct analytic structure for the coupled channels.

□ The difference between two methods is of order $\mathcal{O}((s - s_{th})^3) \Rightarrow$ Good agreement around the threshold.

A more careful treatment is needed, especially away from the threshold.

□ LHCs are treated perturbatively. A conclusive approach would be the full *N*/*D* method.

Thank you for your attention!

・ ロ ト ・ 雪 ト ・ 目 ト ・