Resonance behaviours of the reactions $pp \rightarrow \{pp\}_s \pi^0$ and $pd \rightarrow pd\pi\pi$ in the GeV region

Thursday, 7 June 2018 15:40 (0:20)

Collaboration

Abstract content

Recently differential cross section and vector analyzing power A_y of the one pion production reaction $pp \rightarrow pp_s \pi^0$, where pp_s denotes the pp-pair in the 1S_0 state, were measured by ANKE@COSY [1] at proton beam energies 0.3-0.8 GeV. A resonance behavior of the differential cross section was observed at 0.5-0.8 GeV. This behavior and measured A_y were described using fit by two isovector Breit-Wigner resonances in the 3P_0 and 3P_2 states. The contribution of the Δ -isobar mechanism in this reaction was studied in [2]. The parameters for the coupling constants and vertex form factors which were used to explain the COSY data on the reaction $dp \rightarrow pp_s \pi N$ [3] are applied here. The calculated energy dependence of the differential cross section of the reaction $pp \rightarrow pp_s \pi$ at zero angle of the pion is in qualitative agreement in shape with the data at energy 0.35-0.8 MeV. It is shown that main contribution is made by three partial waves of the pp-channel: 3P_0 , 3P_2 , 3F_2 . The model explains the position of the peak observed at 0.6 GeV and zero diproton scattering angle but underestimates its absolute value. Furthermore, the Δ -mechanism fails to describe the analyzing power A_y .

Resonance structure was observed by ANKE@COSY also in the behavior of the differential cross section of the two-pion production reaction $pd \rightarrow pdX$ at beam energies 0.8-2.0 GeV with high transferred momentum to the deuteron at small scattering angles of the final proton and deuteron (see a talk by D.Tsirkov at this conference). The $d\pi\pi$ invariant masses of the observed peaks are close to 2.380 GeV that is the mass of isoscalar two-baryon resonance $D_{IJ} = D_{03}$ observed by WASA@COSY in the reaction $pn \rightarrow d\pi^0\pi^0$ [4], while the width is by a factor of ~ 1.5 larger than for the D_{03} . One possible mechanism of the reaction $pn \rightarrow d\pi^0\pi^0$ suggested in the paper [5] involves two dibaryon resonances, D_{03} and D_{12} . We modify this model by inclusion of the σ -meson exchange between the proton and deuteron and apply it to the process $pd \rightarrow pdX$.

[1] V.I.Komarov et al. (ANKE@COSY Collab.) Phys. Rev. C 93, 065206 (2016).

[2] Yu.N. Uzikov, Izv. RAN. Ser. Fiz. v.81, 815 (2017) [Bull. Rus. Ac. Sc. 81, 739 (2017)].

[3] Yu.N. Uzikov, J. Haidenbauer, C. Wilkin, PoS (Baldin ISHEPP XXII) 093 (arXiv:1502.04675 [nucl-th]).

[4] P. Adlarson et al. (WASA@COSY Collab.), Phys. Rev. Lett. 106, 242302 (2011).

[5] M.N. Platonova, V.I. Kukulin, Phys. Rev. C 87, 025202 (2013).

Primary author(s) : UZIKOV, Yuriy (Joint Institute for Nuclear Researches)

Presenter(s) : UZIKOV, Yuriy (Joint Institute for Nuclear Researches)

Session Classification : Parallel Session B1