Kaonic deuterium from realistic antikaonnucleon interaction

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

$\bar{K} N$ interaction and potential

- Analysis with chiral SU(3) dynamics
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 88198 (2012)
- Realistic K N potentials
K. Miyahara. T. Hyodo, PRC93, 015201 (2016)
K. Miyahara, T. Hyodo, W. Weise, arXiv: 1804.08269 [nucl-th]
- Prediction of shift and width
- Sensitivity to $\mathrm{I}=1$ component
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

:

Application to kaonic deuterium

$$
1
$$

$$
x+2
$$

$\overline{\mathrm{K} N}$ interaction and potential

$\overline{\mathrm{K}}$ meson and $\overline{\mathrm{K}} \mathrm{N}$ interaction

Two aspects of $K(\bar{K})$ meson

- NG boson of chiral $\operatorname{SU}(3)_{R} \otimes S U(3)_{L} \rightarrow S^{\prime}(3)_{V}$
- Massive by strange quark: $m_{k} \sim 496 \mathrm{MeV}$
-> Spontaneous/explicit symmetry breaking

KN interaction and potential

$\overline{\mathrm{K}}$ meson and $\bar{K} N$ interaction

Two aspects of $K(\bar{K})$ meson

- NG boson of chiral SU(3) $)_{\mathrm{R}} \otimes \operatorname{SU}(3)_{\mathrm{L}} \rightarrow \mathbf{S U (3) _ { \mathrm { V } }}$
- Massive by strange quark: $\mathrm{m}_{\kappa} \sim 496 \mathrm{MeV}$
-> Spontaneous/explicit symmetry breaking
$\bar{K} N$ interaction ...
T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

KN interaction and potential

\bar{K} meson and $\bar{K} N$ interaction

Two aspects of $K(\bar{K})$ meson

- NG boson of chiral SU(3) $)_{\mathrm{R}} \otimes \operatorname{SU}(3)_{\mathrm{L}} \rightarrow \mathbf{S U (3) _ { \mathrm { V } }}$
- Massive by strange quark: $\mathrm{m}_{\kappa} \sim 496 \mathrm{MeV}$
-> Spontaneous/explicit symmetry breaking
$\bar{K} N$ interaction ...
T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

$\overline{\mathrm{K}} N$ interaction and potential

$\overline{\mathrm{K}}$ meson and $\bar{K} N$ interaction

Two aspects of $K(\bar{K})$ meson

- NG boson of chiral SU(3) ${ }_{\mathrm{R}} \otimes \operatorname{SU}(3)_{\mathrm{L}} \rightarrow \mathbf{S U (3) _ { \mathrm { V } }}$
- Massive by strange quark: $\mathrm{m}_{\kappa} \sim 496 \mathrm{MeV}$
-> Spontaneous/explicit symmetry breaking

$\bar{K} N$ interaction ...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is coupled with $\pi \Sigma$ channel
- generates $\wedge(1405)$ below threshold

molecule three-quark
$\overline{\mathrm{K} N}$ interaction and potential

$\overline{\mathrm{K}}$ meson and $\bar{K} N$ interaction

Two aspects of $K(\bar{K})$ meson

- NG boson of chiral SU(3) ${ }_{\mathrm{R}} \otimes \operatorname{SU}(3)_{\mathrm{L}} \rightarrow \mathbf{S U (3) _ { \mathrm { V } }}$
- Massive by strange quark: $\mathrm{m}_{\kappa} \sim 496 \mathrm{MeV}$
-> Spontaneous/explicit symmetry breaking

$\bar{K} N$ interaction ...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is coupled with $\pi \Sigma$ channel
- generates $\wedge(1405)$ below threshold

molecule three-quark
- is fundamental building block for $\overline{\mathrm{K}}$-nuclei, $\overline{\mathrm{K}}$-atoms, ...
$\overline{\mathrm{K} N}$ interaction and potential

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays
M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

EM int. p

KN interaction and potential

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

EM int.

K- strong int.

은 긍
흘
등

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays
M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

EM int.

strong int.

EM value

- Shift and width of atomic state $<\rightarrow$ K-p scattering length
U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Quantitative constraint on the $\bar{K} N$ interaction at fixed energy

$\overline{\mathrm{K}} N$ interaction and potential

Best-fit results of chiral SU(3) dynamics

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 88198 (2012)

Accurate description of all existing data ($x^{2 / d}$.o.f. ~ 1)
$\overline{\mathrm{K} N}$ interaction and potential

Subthreshold extrapolation

Uncertainty of $\bar{K} N \rightarrow \overline{\mathrm{~K}} N(I=0)$ amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A954, 41 (2016)
$\bar{K} N$ interaction and potential

Subthreshold extrapolation

Uncertainty of $\bar{K} N \rightarrow \overline{\mathrm{~K}} N(I=0)$ amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A954, 41 (2016)

- c.f. without SIDDHARTA
R. Nissler, Doctoral Thesis (2007)

Accurate data is essential to reduce theoretical uncertainty. ${ }_{6}$
$\overline{\mathrm{K} N}$ interaction and potential

Remaining ambiguity

$\overline{\mathrm{K}} N$ interaction has two isospin components ($|=0|=$,1).

$$
a\left(K^{-} p\right)=\frac{1}{2} a(I=0)+\frac{1}{2} a(I=1)+\ldots, \quad a\left(K^{-} n\right)=a(I=1)+\ldots
$$

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A954, 41(2016)
Relatively large uncertainty in $\mathrm{I}=1$ sector

- More constraints required (<- kaonic deuterium?)

PDG changes

PDG particle listing of $\wedge(1405)$

M. Tanabashi, et al., Phys. Rev. D98, 030001 (2018), http://pdg. lbl.gov/

^(1405) $1 / 2^{-}$
 $I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)$Status: $20-4$

The nature of the $\Lambda(1405)$ has been a puzzle for decades: t quark state or hybrid; two poles or one. We cannot here survey the rather extensive literature. See, for example, CIEPLY 10, KISSLINGER 11, SEKIHARA 11, and SHEVCHENKO 12A for discussions and earlier references.
It seems to be the universal opinion of the chiral-unitary community that there are two poles in the $1400-\mathrm{MeV}$ region. ZYCHOR 08 presents experimental evidence against the two-pole model, but this is disputed by GENG 07A. See also REVAI 09, which finds little basis for choosing between one- and two-pole models; and IKEDA 12, which favors the two-pole model.
A single, ordinary three-quark $\Lambda(1405)$ fits nicely into a $J^{P}=$ $1 / 2^{-} \operatorname{SU}(4) \overline{4}$ multiplet, whose other members are the $\Lambda_{c}(2595)^{+}$ $\bar{\Xi}_{c}(2790)^{+}$, and $\bar{E}_{c}(2790)^{0}$; see Fig. 1 of our note on "Charmed Baryons."

^(1405) MASS

```
PRODUCTION EXPERIMENTS
\begin{tabular}{|c|c|c|}
\hline VALUE (MeV) EVTS & DOCUMENT ID & TECN COMMENT \\
\hline \multicolumn{3}{|l|}{\(1405.1+1.3\) OUR AVERAGE} \\
\hline \(1405{ }_{-11}^{+11}\) & HASSANVAND 13 & SPEC pp \(\rightarrow p \wedge(1405) K^{+}\) \\
\hline \(1405 \pm 1.4\) & ESMAILI 10 & RVUE \({ }^{4} \mathrm{He} K^{-} \rightarrow \Sigma^{ \pm} \pi^{\mp} X\) at rest \\
\hline \(1406.5 \pm 4.0\) & \({ }^{1}\) DALITZ 91 & M-matrix fit \\
\hline
\end{tabular}
```


$\Lambda(1405) 1 / 2^{-}$

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalitc urscusseu the S-shaped cusp behavior of the intensity at the $N-\bar{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\bar{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^{P}=1 / 2^{-}$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^{P}=1 / 2^{-}$spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow$ $K^{+} \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) \rightarrow Σ^{+}(polarized) π^{-}. The observed isotropic decay of $\Lambda(1405)$ is consistent with spin $J=1 / 2$. The polarization transfer to the Σ^{+}(polarized) direction revealed negative parity, and thus established $J^{P}=1 / 2^{-}$
See the related review(s):
Pole Structure of the $\Lambda(1405)$ Region

PDG changes

PDG particle listing of $\wedge(1405)$

M. Tanabashi, et al., Phys. Rev. D98, 030001 (2018), http://pdg. lbl.gov/

$\Lambda(1405) 1 / 2^{-}$
 $I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)$Status: 2014

The nature of the $\Lambda(1405)$ has been a puzzle for decades: t quark state or hybrid; two poles or one. We cannot here survey the rather extensive literature. See, for example, CIEPLY 10, KISSLINGER 11, SEKIHARA 11, and SHEVCHENKO 12A for dis cussions and earlier references.

It seems to be the universal opinion of the chiral-unitary community that there are two poles in the $1400-\mathrm{MeV}$ region. ZYCHOR 08 presents experimental evidence against the two-pole model, but this is disputed by GENG 07A. See also REVAI 09, which finds little basis for choosing between one- and two-pole models; and IKEDA 12, which favors the two-pole model.
A single, ordinary three-quark $\Lambda(1405)$ fits nicely into a $J^{P}=$ $1 / 2^{-} \operatorname{SU}(4) \overline{4}$ multiplet, whose other members are the $\Lambda_{c}(2595)^{+}$ $\bar{\Xi}_{c}(2790)^{+}$, and $\equiv_{c}(2790)^{0}$; see Fig. 1 of our note on "Charmed Baryons."

$\Lambda(1405)$ MASS

PRODUCTION EXPERIMENTS

VALUE (MeV)	DOCUMENT ID	TECN COMMENT
1405.1- ${ }_{-1.0}^{1.3}$ OUR AVERAGE		
$1405{ }_{-}^{+11}$	HASSANVAND 13	SPEC pp \rightarrow p 1 (1405) K^{+}
1405 ± 1.4	ESMAILI 10	RVUE ${ }^{4} \mathrm{He} K^{-} \rightarrow \Sigma^{ \pm} \pi^{\mp} X$ at rest
1406.5 ± 4.0	${ }^{1}$ DALITZ 91	M-matrix fit

$\Lambda(1405) 1 / 2^{-}$
 $I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right) \mathrm{S} 20-18$

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalit< ursumseu the S -shaped cusp behavior of the intensity at the $N-\bar{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\bar{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^{P}=1 / 2^{-}$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^{P}=1 / 2^{-}$spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow$ $K^{+} \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) \rightarrow Σ^{+}(polarized) π^{-}. The observed isotropic decay of $\Lambda(1405)$ is consistent with spin $J=1 / 2$. The polarization transfer to the Σ^{+}(polarized) direction revealed negative parity, and thus established $J^{P}=1 / 2^{-}$
See the related review(s):
Pole Structure of the $\Lambda(1405)$ Region

^(1405) REGION POLE POSITIONS			
REAL PART VALUE (MeV)	DOCUMENT ID		TECN
- - We do not	data for averag	,	limits, e
$1429+8$	${ }^{1} \mathrm{MAI}$	15	DPWA
$1325{ }_{-15}^{+15}$	${ }^{2} \mathrm{MAI}$	15	DPWA
$1434+2$	${ }^{3} \mathrm{MAI}$	15	DPWA
$1330{ }_{-}^{+4}$	${ }^{4} \mathrm{MAI}$	15	DPWA
$1421+3$	${ }^{5}$ GUO	13	DPWA
$1388+9$	6 Guo	13	DPWA
$1424+{ }_{-23}^{+7}$	7 IKEDA	12	DPWA
$1381+18$	8^{1} IKEDA		DPWA

PDG changes

PDG particle listing of $\wedge(1405)$

M. Tanabashi, et al., Phys. Rev. D98, 030001 (2018), http://pdg. lbl. gov/

- Our analysis (+ 2 other groups) included
- Pole positions are now tabulated, prior to mass/width.
$\overline{\mathrm{K} N}$ interaction and potential

Construction of KN potential

Accurate scattering amplitude is now available.

- local $\bar{K} N$ potential in Schrödinger eq.
\rightarrow device to be used in few-body calculations
$\overline{\mathrm{K}} N$ interaction and potential

Construction of KN potential

Accurate scattering amplitude is now available.

- local $\bar{K} N$ potential in Schrödinger eq.
\rightarrow device to be used in few-body calculations

Construction of equivalent potential

- single-channel $\bar{K} N$ potential
K. Miyahara. T. Hyodo, Phys. Rev. C93, 015201 (2016)
- coupled-channel $\bar{K} N-\pi \Sigma$ potential

K. Miyahara, T. Hyodo, W. Weise, arXiv: 1804.08269 [nucl-th]
- original (black) v.s. potential (red)
$\overline{\mathrm{K} N}$ interaction and potential

Construction of KN potential

Accurate scattering amplitude is now available.

- local $\bar{K} N$ potential in Schrödinger eq.
\rightarrow device to be used in few-body calculations

Construction of equivalent potential

- single-channel $\bar{K} N$ potential
K. Miyahara. T. Hyodo, Phys. Rev. C93, 015201 (2016)
- coupled-channel $\bar{K} N-\pi \Sigma$ potential

K. Miyahara, T. Hyodo, W. Weise, arXiv: 1804.08269 [nucl-th]
- original (black) v.s. potential (red)

These potentials accurately reproduces data ($\mathrm{X}^{2} /$ d. o.f. ~ 1)
-> realistic $\bar{K} N$ potential

Application to kaonic deuterium

Kaonic deuterium: background

K-pn system with strong + Coulomb interaction

- Experiments are planned at J-PARC E57, SIDDHARTA-2

Application to kaonic deuterium

Kaonic deuterium: background

K-pn system with strong + Coulomb interaction

- Experiments are planned at J-PARC E57, SIDDHARTA-2

Application to kaonic deuterium

Kaonic deuterium: background

K-pn system with strong + Coulomb interaction

- Experiments are planned at J-PARC E57, SIDDHARTA-2

Theoretical requirements:

- Rigorous three-body treatment of strong + Coulomb
- Inclusion of SIDDHARTRA constraint (realistic K N)
- c.f. advanced Faddeev calculations
P. Doleschall, J. Revai, N.V. Shevchenko, Phys. Lett. B 744, 105 (2015);
J. Revai, Phys. Rev. C 94, 054001 (2016)

Application to kaonic deuterium

Check of kaonic hydrogen

Kaonic hydrogen ($K-p$) in the present setup?

- Deser-type formula is based on (systematic) expansion.
- $\overline{\mathrm{K}} N$ potential is formulated with isospin symmetry.

Two-body calculation with physical masses

$$
\left(\begin{array}{cc}
\hat{T}+\hat{V}^{\hat{K} N}+\hat{V}^{\mathrm{EM}} & \hat{V^{\hat{K} N}} \\
\hat{V}^{K} N & \hat{T}+\hat{V}^{\bar{K} N}+\Delta m
\end{array}\right)\binom{\left|K^{-} p\right\rangle}{\left.\bar{K}^{0} n\right\rangle}=E\binom{\left|K^{-} p\right\rangle}{\left|\bar{K}^{0} n\right\rangle}
$$

Application to kaonic deuterium

Check of kaonic hydrogen

Kaonic hydrogen ($K-p$) in the present setup?

- Deser-type formula is based on (systematic) expansion.
- $\overline{\mathrm{K}} N$ potential is formulated with isospin symmetry.

Two-body calculation with physical masses

$$
\left(\begin{array}{cc}
\hat{T}+\hat{V}^{\hat{K} N}+\hat{V}^{\mathrm{EM}} & \hat{V^{\hat{K} N}} \\
\hat{V}^{K} N & \hat{T}+\hat{V}^{\bar{K} N}+\Delta m
\end{array}\right)\binom{\left|K^{-} p\right\rangle}{\left.\bar{K}^{0} n\right\rangle}=E\binom{\left|K^{-} p\right\rangle}{\left|\bar{K}^{0} n\right\rangle}
$$

Result:

- consistent with SIDDHARTA constraint

Mass	E dependence	$\Delta E(\mathrm{eV})$	$\Gamma(\mathrm{eV})$
Physical	Self-consistent	283	607
Isospin	Self-consistent	163	574
Physical	$E_{\bar{K} N}=0$	283	607
Expt. $[31,32]$		$283 \pm 36 \pm 6$	$541 \pm 89 \pm 22$

Application to kaonic deuterium

Check of kaonic hydrogen

Kaonic hydrogen ($K-p$) in the present setup?

- Deser-type formula is based on (systematic) expansion.
- $\overline{\mathrm{K}} N$ potential is formulated with isospin symmetry.

Two-body calculation with physical masses

$$
\left(\begin{array}{cc}
\hat{T}+\hat{V}^{\hat{K} N}+\hat{V}^{\mathrm{EM}} & \hat{V^{\hat{K} N}} \\
\hat{V}^{K} N & \hat{T}+\hat{V}^{\bar{K} N}+\Delta m
\end{array}\right)\binom{\left|K^{-} p\right\rangle}{\left.\bar{K}^{0} n\right\rangle}=E\binom{\left|K^{-} p\right\rangle}{\left|\bar{K}^{0} n\right\rangle}
$$

Result:

- consistent with SIDDHARTA constraint
- Ressumed Deser-type formula works reasonably for K-p.

Mass	E dependence	$\Delta E(\mathrm{eV})$	$\Gamma(\mathrm{eV})$
Physical	Self-consistent	283	607
Isospin	Self-consistent	163	574
Physical	$E_{\bar{K} N}=0$	283	607
Expt. [31,32]		$283 \pm 36 \pm 6$	$541 \pm 89 \pm 22$

	$\Delta E(\mathrm{eV})$	$\Gamma(\mathrm{eV})$
Full Schrödinger equation	283	607
Improved Deser formula (18)	293	596
Resummed formula (19)	284	605

Application to kaonic deuterium

Formulation

Three-body calculation of K-d with physical masses
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
\hat{H}_{12}^{\hat{H}_{K-p n}}+\hat{V}_{13}^{K} N
\end{array} \hat{V}_{12}^{\bar{K} N}+\hat{V}_{13}^{\bar{K} N}\right. \\
\hat{H}_{\bar{K}_{n n}}
\end{array}\right)\binom{\left|K^{-} p n\right\rangle}{\left|\bar{K}^{0} n n\right\rangle}=E\binom{\left|K^{-} p n\right\rangle}{\left|\bar{K}^{0} n n\right\rangle}
$$

- (single-channel) realistic $\bar{K} N$ potential
K. Miyahara. T. Hyodo, Phys. Rev. C93, 015201 (2016)

Few-body technique

- stochastic variational method + correlated gaussian basis Y. Suzuki, K. Varga, Lect. Notes Phys. M54, (1998)

Application to kaonic deuterium

Kaonic deuterium: shift and width

Results of the three-body calculation

- energy convergence
<- large number of basis

N	$\operatorname{Re}[E](\mathrm{MeV})$
1677	-2.211689436
2194	-2.211722964
2377	-2.211732072
2511	-2.211735493
2621	-2.211737242
2721	-2.211737609
2806	-2.211737677
2879	-2.211737682
	-

Application to kaonic deuterium

Kaonic deuterium: shift and width

Results of the three-body calculation

- energy convergence
<- large number of basis

Shift-width of the 1 S state:

N	$\operatorname{Re}[E](\mathrm{MeV})$
1677	-2.211689436
2194	-2.211722964
2377	-2.211732072
2511	-2.211735493
2621	-2.211737242
2721	-2.211737609
2806	-2.211737677
2879	

$$
\Delta E-i \Gamma / 2=(670-i 508) \mathrm{eV}
$$

- No shift in 2P state is shown by explicit calculation.
- Deser-type formula does not work accurately for K-d
c.f.) J. Revai, Phys. Rev. C 94, 054001 (2016)

	$\Delta E(\mathrm{eV})$	$\Gamma(\mathrm{eV})$
Full Schrödinger equation	670	1016
Improved Deser formula (18)	910	989
Resummed formula (19)	818	1188

Application to kaonic deuterium

I=1 dependence

Study sensitivity to $l=1$ interaction

- introduce parameter β to control the potential strength

$$
\operatorname{Re} \hat{V}^{\bar{K} N(I=1)}(r) \rightarrow \beta\left[\operatorname{Re} \hat{V}^{\bar{K} N(I=1)}(r)\right]
$$

Application to kaonic deuterium

I=1 dependence

Study sensitivity to $\mathrm{l}=1$ interaction

- introduce parameter β to control the potential strength

$$
\operatorname{Re} \hat{V}^{\bar{K} N(I=1)}(r) \rightarrow \beta\left[\operatorname{Re} \hat{V}^{\bar{K} N(I=1)}(r)\right]
$$

Vary β within SIDDHARTA uncertainty of $K-p$

- allowed region: $-0.17<\beta<1.08$
(negative β may contradict with scattering data)

β	$K^{-} p$		$K^{-} d$	
	ΔE	Γ	ΔE	Γ
1.08	287	648	676	1020
1.00	283	607	670	1016
-0.17	310	430	506	980

Application to kaonic deuterium

I=1 dependence

Study sensitivity to $l=1$ interaction

- introduce parameter β to control the potential strength

$$
\operatorname{Re} \hat{V}^{\bar{K} N(I=1)}(r) \rightarrow \beta\left[\operatorname{Re} \hat{V}^{\bar{K} N(I=1)}(r)\right]
$$

Vary β within SIDDHARTA uncertainty of $K-p$

- allowed region: $-0.17<\beta<1.08$
(negative β may contradict with scattering data)

β	$K^{-} p$		$K^{-} d$	
	ΔE	Γ	ΔE	Γ
1.08	287	607	676	1020
1.00	283	607	670	1016
-0.17	310	430	506	980

- deviation of $\Delta \mathrm{E}$ of $\mathrm{K}-\mathrm{d} \sim \mathbf{1 7 0} \mathbf{~ e V}$
- Planned precision: $60 \mathrm{eV}(30 \mathrm{eV})$ at J-PARC (SIDDHARTA-2)

Summary: $\wedge(1405)$

Realistic $\bar{K} N$ potentials ($X^{2 / d . o . f . ~} \sim 1$) based on NLO chiral SU(3) dynamics are now available, thanks to precise kaonic hydrogen data.
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 88198 (2012)
K. Miyahara. T. Hyodo, PRC93, 015201 (2016)
K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th]

We study kaonic dueterium as

- Prediction of shift and width
$\Delta E-i \Gamma / 2=(670-i 508) \mathrm{eV}$
- sensitive to $\mathrm{I}=1$ component
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

