

Baryon-baryon femtoscopy in pp and p-A collisions with ALICE

VALENTINA MANTOVANI SARTI FOR THE ALICE COLLABORATION

PHYSIK-DEPARTMENT - TECHNISCHE UNIVERSITÄT MÜNCHEN

D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva Phys. Rev. Lett. 114, 092301 (2015)

- With the onset of the production of hyperons the EoS softens
- EoS allowing for hyperon production fail to describe heavy neutron stars \rightarrow Hyperon Puzzle
- 2-body and 3-body interactions are fundamental ingredients for the EoS

Y-N Scattering Data and Hypernuclei data

- Data from scattering experiments from 1968 and 1971 in bubble chambers
 - $K^- + p \rightarrow \Sigma^0 + \pi^0, \Sigma^0 \rightarrow \Lambda + \gamma$
 - Production threshold for $\Lambda 's:p~\gtrsim 100~MeV$
- One observed double Λ hyper-nucleus (Nagara Event) predicts a shallow $\Lambda-\Lambda$ attraction
- Different types of measurements needed to obtain constraints at low momentum
- Can we use Femtoscopic measurements?

LO: H. Polinder, J.H., U. Meiβner, NPA 779 (2006) 244 NLO: J.Haidenbauer., N.Kaiser, et al., NPA 915 (2013) 24

Femtoscopy at A Large Ion Collider Experiment

- We measure **p-p**, **p-Λ**, **Λ-Λ**, **p-Ξ**
- Proton identification with TPC and TOF
- Reconstruction of hyperons
 - $\Lambda
 ightarrow p\pi^-$ (BR ~ 64%)
 - $\Xi^- \rightarrow \Lambda \pi^-$ (BR ~ 100%)
 - Datasets:
 - pp 7 TeV: 3.4·10⁸ Events
 - pp 13 TeV: 10·10⁸ Event
 - p-Pb 5.02 TeV:
- 10.10⁸ Events
- 6.0·10⁸ Events

Given by:

The correlation function:

ТШП

The correlation function:

$$C(k^*) = \frac{P(\boldsymbol{p}_a, \boldsymbol{p}_b)}{P(\boldsymbol{p}_a)P(\boldsymbol{p}_b)},$$

Experimentally obtained as:

$$C(k^*) = \mathcal{N} \frac{N_{Same}(k^*)}{N_{Mixed}(k^*)}$$

Given by:

ТШП

The correlation function:

Modelling the Correlation function

CATS Correlation Analysis Tool Using the Schrödinger Equation		Lednický
Numerical Solver		Analytical Model
Analytical source distribution Distributions from transport models	SOURCE	Gaussian source distribution
 Solution of the two particle Schrödinger Equation ➤ Can incorporate any strong interaction potential, Coulomb interaction and effects of quantum statistics 	WAVE FUNCTION	 Based on the effective Range expansion ➤ The interaction is modeled using the scattering length (f₀) and the effective range (d₀)
p-p, p- Ξ and p- Λ (NLO) Correlation function	Used to fit the	p- Λ (LO) and $\Lambda ext{}\Lambda$ Correlation function
(D.L.Mihaylov, V.M.S, O.W.Arnold, L.Fabbietti, B.Hohlweger, A.M.Mathis, Eur.Phys.J. C78 (2018) no.5,394)		R. Lednicky and V. L. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982), [Yad. Fiz.35,1316(1981)].

0.5 0.8 0.12 0.08 0.1 0.02 0.040.06 0.05 0.15 0.1 0.2 0.05 0.1 k* (GeV/c) k* (GeV/c)

- Gaussian source and Argonne v_{18} potential describes the p-p correlation function
 - Source size of the pp (7 TeV) system r₀=1.14 fm (ALICE Coll. arXiv:1805.12455)
 - Source size of the **pp (13 TeV)** system **r**₀=1.19 fm
 - Source size of the **p-Pb (5.02 TeV)** system **r**₀=1.44 fm
- p- Λ correlation \Rightarrow strong sensitivity to the source \Rightarrow more investigations of the source are needed

0.8

0.6

0.4

0.2

k* (GeV/c)

0.15

$\Lambda - \Lambda$ Correlations: Combined Exclusion Plot

- Combination of all available datasets: pp 7 TeV, pp 13
 TeV, p-Pb 5.02 TeV
- Test of the **agreement between data and the prediction by the Lednicky model by n**σ
- Small source size, large d₀
 and negative f₀ limit the
 prediction power of

Lednicky

$p-\Xi^-$ Correlation Function in p-Pb 5.02 TeV

- YN potential strongly affects the EoS of nuclear matter \Rightarrow not constrained for heavier hyperons such Ξ
- Extract an average value of $V_{N\Xi}^{-}$ at ρ_0

(Potential from Hatsuda et al., NPA967 (2017) 856, PoS Lattice2016 (2017) 116)

50

K⁻- p Correlation-pp 5 TeV, 7 TeV, 13 TeV

- Analysis on datasets:
 - pp 5 TeV, 7 TeV, 13
 TeV
- Short range KN interaction:
 - Λ(1405), kaonic atoms and kaonic clusters
- Kaonic atoms and scattering data

Summary and Outlook:

- Femtoscopy is an excellent tool to study interactions of particle pairs
- Significant sensitivity to the interaction potentials
- For hyperons, accesses novel regions not constrained by scattering experiments
- Λ-Λ analysis strongly constrains the parameter space for the Λ-Λ interaction \Rightarrow the existence of H-dibaryons seems to be disfavored (ALICE coll., Phys. Lett. B 752)
- Observation of **attractive p-\Xi^- interaction for the first time** \Rightarrow set constraints on the average potential of Ξ hyperons at finite density for NS EoS
- $\overline{\mathbf{K}}\mathbf{N}$ analysis \Rightarrow access to low momentum region \Rightarrow study of $\overline{\mathbf{K}^0}\mathbf{n}$ coupled channel contribution

16

In the future

•You name the pair, we measure it: $p-\Omega$, $\Omega-\Omega$, K-d,....

- Universal and Robust Femto Analysis Tool
 - Fit the correlation function of various systems simultaneously in combination with CATS
- Development of a formalism to study three particle correlations

Backup Slides

Valentina Mantovani Sarti (TUM Physics Department – E62)

p- Λ Correlations: Scaled EPOS source

- Double Gaussian and a Cauchy source distributions fail to describe the data
- Only the rescaled EPOS source fits the data
 - Favors χEFT NLO potential
 - EPOS + NLO χ2/ndf : 1.45
 - Gauss + LO χ2/ndf : 0.49
- Take home message: Improve on understanding the source

$\Lambda - \Lambda \text{ Correlations: Predictions with Lednicky}$ $\int_{2}^{2} \int_{2}^{2} \int_{2}^{2}$

- Curves represent different points in the Λ - Λ exclusion plot
- For scattering parameters in the region $a_0 > 0$ the correlation function is not sensitive

Decomposition of the p-p correlation function T

 $\{ pp \} = pp + p_{\Lambda}p + p_{\Lambda} + p_{\Lambda} + p_{\Sigma^{+}}p + p_{\Sigma^{+}}p_{\Sigma^{+}} + p_{\Lambda}p_{\Sigma^{+}} + \tilde{p}p + \tilde{p}p_{\Lambda} + \tilde{p}p_{\Sigma^{+}} + \tilde{p}\tilde{p},$

- Purity from MC (Pythia 8)
- Feed-down fractions from MC template fits to the DCA_{xy} distribution

h-h
λ[%]
75.19
15.06
0.75
6.46
0.14
0.65
1.52
0.15
0.07
0.01

Decomposition of the p- Λ correlation function Π

$$\begin{split} \{p\Lambda\} &= p\Lambda + p\Lambda_{\Xi^-} + p\Lambda_{\Xi^0} + p\Lambda_{\Sigma^0} + p_\Lambda\Lambda + p_\Lambda\Lambda_{\Xi^-} + p_\Lambda\Lambda_{\Xi^0} + p_\Lambda\Lambda_{\Sigma^0} \\ &+ p_{\Sigma^+}\Lambda + p_{\Sigma^+}\Lambda_{\Xi^-} + p_{\Sigma^+}\Lambda_{\Xi^0} + p_{\Sigma^+}\Lambda_{\Sigma^0} + \tilde{p}\Lambda + \tilde{p}\Lambda_{\Xi^-} + \tilde{p}\Lambda_{\Xi^0} + \tilde{p}\Lambda_{\Sigma^0} \\ &+ p\tilde{\Lambda} + p_\Lambda\tilde{\Lambda} + p_{\Sigma^+}\tilde{\Lambda} + \tilde{p}\tilde{\Lambda}. \end{split}$$

- Purity from fits to the invariant mass distribution
- Feed-down fractions from MC template fits to the cosα distribution

$p-\Lambda$		p–A		
Pair	λ[%]	Pair	λ [%]	
рΛ	52.42	ĩΛ	0.53	
$p\Lambda_{\Xi^-}$	6.94	$\tilde{p}\Lambda_{\Xi^-}$	0.07	
$p\Lambda_{\Xi^0}$	6.94	$\tilde{p}\Lambda_{\Xi^0}$	0.07	
$p\Lambda_{\Sigma^0}$	17.47	$ ilde{p}\Lambda_{\Sigma^0}$	0.18	
$p_\Lambda \Lambda$	5.25	$p\tilde{\Lambda}$	2.95	
$p_\Lambda\Lambda_{\Xi^-}$	0.69	$p_{\Lambda}\tilde{\Lambda}$	0.30	
$p_\Lambda\Lambda_{\Xi^0}$	0.69	$p_{\Sigma^+} ilde\Lambda$	0.13	
$p_\Lambda\Lambda_{\Sigma^0}$	1.75	pÃ	0.03	
$p_{\Sigma^+}\Lambda$	2.25		1	
$p_{\Sigma^+}\Lambda_{\Xi^-}$	0.30			
$p_{\Sigma^+}\Lambda_{\Xi^0}$	0.30			
$p_{\Sigma^+}\Lambda_{\Sigma^0}$	0.75			

Decomposition of the Λ - Λ correlation function Π

$$egin{aligned} \{\Lambda\Lambda\} &= \Lambda\Lambda + \Lambda\Lambda_{\Sigma^0} + \Lambda_{\Sigma^0}\Lambda_{\Sigma^0} + \Lambda\Lambda_{\Xi^0} + \Lambda_{\Xi^0}\Lambda_{\Xi^0} + \Lambda\Lambda_{\Xi^-} \ &+ \Lambda_{\Xi^-}\Lambda_{\Xi^-} + \Lambda_{\Sigma^0}\Lambda_{\Xi^0} + \Lambda_{\Sigma^0}\Lambda_{\Xi^-} + \Lambda_{\Xi^0}\Lambda_{\Xi^-} \ &+ \tilde{\Lambda}\Lambda + \tilde{\Lambda}\Lambda_{\Sigma^0} + \tilde{\Lambda}\Lambda_{\Xi^-} + \tilde{\Lambda}\Lambda_{\Xi^0} + \tilde{\Lambda}\tilde{\Lambda}. \end{aligned}$$

Lambda properties obtained from the Λ purity and the $cos\alpha$ template fits

Λ – Λ		Λ – Λ		
Pair	λ[%]	Pair	λ[%]	
ΛΛ	36.54	$\tilde{\Lambda}\Lambda$	4.11	
$\Lambda\Lambda_{\Sigma^0}$	24.36	$ ilde{\Lambda}\Lambda_{\Sigma^0}$	1.37	
$\Lambda_{\Sigma^0}\Lambda_{\Sigma^0}$	4.06	$ ilde{\Lambda} \Lambda_{\Xi^0}$	0.54	
$\Lambda\Lambda_{\Xi^0}$	9.67	$ ilde{\Lambda}\Lambda_{\Xi^-}$	0.54	
$\Lambda_{\Xi^0}\Lambda_{\Xi^0}$	0.64	$ ilde{\Lambda} ilde{\Lambda}$	0.12	
$\Lambda\Lambda_{\Xi^-}$	9.67			
$\Lambda_{\Xi^-}\Lambda_{\Xi^-}$	0.64			
$\Lambda_{\Sigma^0}\Lambda_{\Xi^0}$	3.22			
$\Lambda_{\Sigma^0}\Lambda_{\Xi^-}$	3.22			
$\Lambda_{\Xi^0}\Lambda_{\Xi^-}$	1.28			

Decomposition of the p- Ξ correlation function Π

$$\begin{split} \{p\Xi^{-}\} &= p\Xi^{-} + p\Xi_{\Xi^{-}(1530)}^{-} + p\Xi_{\Xi^{0}(1530)}^{-} + p\Xi_{\Omega}^{-} + p_{\Lambda}\Xi^{-} + p_{\Lambda}\Xi_{\Xi^{-}(1530)}^{-} \\ &+ p_{\Lambda}\Xi_{\Xi^{0}(1530)}^{-} + p_{\Lambda}\Xi_{\Omega}^{-} + p_{\Sigma^{+}}\Xi^{-} + p_{\Sigma^{+}}\Xi_{\Xi^{-}(1530)}^{-} + p_{\Sigma^{+}}\Xi_{\Xi^{0}(1530)}^{-} + p_{\Sigma^{+}}\Xi_{\Omega}^{-} \\ &+ \tilde{p}\Xi^{-} + \tilde{p}\Xi_{\Xi^{-}(1530)}^{-} + \tilde{p}\Xi_{\Xi^{0}(1530)}^{-} + \tilde{p}\Xi_{\Omega}^{-} + p\tilde{\Xi^{-}} + p_{\Lambda}\tilde{\Xi^{-}} + p_{\Sigma^{+}}\tilde{\Xi^{-}} + \tilde{p}\tilde{\Xi^{-}} \\ &+ \tilde{p}\Xi^{-} + \tilde{p}\Xi_{\Xi^{-}(1530)}^{-} + \tilde{p}\Xi_{\Xi^{0}(1530)}^{-} + \tilde{p}\Xi_{\Omega}^{-} + p\tilde{\Xi^{-}} + p_{\Lambda}\tilde{\Xi^{-}} + p\tilde{\Xi^{-}} + \tilde{p}\tilde{\Xi^{-}} \\ &+ \tilde{p}\Xi^{-} + \tilde{p}\Xi_{\Xi^{-}(1530)}^{-} + \tilde{p}\Xi_{\Xi^{0}(1530)}^{-} + \tilde{p}\Xi_{\Omega}^{-} + p\tilde{\Xi^{-}} + p_{\Lambda}\tilde{\Xi^{-}} + p\tilde{\Xi^{-}} +$$

Feeding from

- Ω (BR very small)
- $\Xi^{0}(1530)$ and $\Xi^{-}(1530)$
 - Isospin partners: assume to be produced in the same amount
 - ∑(1530)/Ξ⁻ = 0.32
 (https://doi.org/10.1140/epjc/s10052-014-3191-x)
 - BR($\Xi^{0}(1530) \rightarrow \Xi^{-}$) = 2/3
 - BR($\Xi^{-}(1530) \rightarrow \Xi^{-}$) = 1/3

p–Ξ		p–Ξ		
Pair	λ[%]	Pair	λ [%]	
рΞ [_]	52.40	pΞ-	0.53	
$p\Xi_{\Xi^{-}(1530)}^{-}$	8.32	$\tilde{p}\Xi_{\Xi^{-}(1530)}^{-}$	0.08	
$p\Xi_{\Xi^{0}(1530)}^{-}$	16.65	$\tilde{p}\Xi_{\Xi^{0}(1530)}^{-}$	0.17	
$p\Xi_{\Omega}^{-}$	0.67	$\tilde{p}\Xi_{\Omega}^{-}$	0.01	
$p_{\Lambda}\Xi^{-}$	5.25	pΞ ^{̃−}	8.67	
$p_{\Lambda}\Xi^{-}_{\Xi^{-}(1530)}$	0.83	$p_{\Lambda}\tilde{\Xi^{-}}$	0.87	
$p_{\Lambda}\Xi^{-}_{\Xi^{0}(1530)}$	1.67	$p_{\Sigma^+} \widetilde{\Xi^-}$	2.25	
$p_{\Lambda}\Xi_{\Omega}^{-}$	0.07	p̃Ξ̃−	0.09	
$p_{\Sigma^+} \Xi^-$	2.25			
$p_{\Sigma^+} \Xi^{\Xi^-(1530)}$	0.36			
$p_{\Sigma^+} \Xi^{\Xi^0(1530)}$	0.71			
$p_{\Sigma^+} \Xi_{\Omega}^-$	0.03			

The unique opportunity of small sources

