

XYZ states at LHCb

Marcin Kucharczyk on behalf of LHCb Collaboration IFJ PAN Krakow

MESON 2018, Krakow 07.06 - 12.06 2018

Outline

XYZ states

- Probing X(3872) composition
 - \rightarrow quantum number confirmed 1⁺⁺
- Enigmatic $X \rightarrow J/\psi \phi$ states
 - $\rightarrow X(4140), X(4270), X(4500), X(4700)$
- Confirmation of resonant nature of Z(4430)
 - \rightarrow 4D amplitude analysis
 - \rightarrow moment analysis
- Tetraquark X(5568)?
 - \rightarrow non-confirmation by LHCb
 - \rightarrow not seen by CDF
 - \rightarrow seen again by D0
- Search for tetraquarks in $Y(1S) \mu^+\mu^-$ system **NEW!** [LHCb-PAPER-2018-027]

[PRD 92 (2015) 011102]

[PR D95 (2017) 012002] [PRL 118 (2017) 02203]

[PRL 112 (2014) 222002] [PRD 92 (2015) 112009]

[PRL 117 (2016) 152003]

LHCb detector

- [Int. J. Mod. Phys. A30 (2015) 1530022]
- designed for CP violation & rare decays of heavy hadrons

- precision coverage unique for LHCb 2 < η < 5 (~40% of bb in forward region)
- excellent tracking and vertexing ($\sigma(IP) \sim 20 \ \mu m$ for high-p_T tracks)
- good hadron PID separation up to 100 GeV
- efficient trigger with $\mu's$

Data sample used

All results in this talk correspond to 3 fb⁻¹ Run 1 data

• 4 x 10¹² *b*-hadrons produced in LHCb acceptance

Run 1 & Run 2

- Run 1: 3 fb⁻¹ in 2011 and 2012 $(\sqrt{s} = 7, 8 \, TeV)$
- Run 2: > 4 fb⁻¹ in 2015-2018 so far $(\sqrt{s} = 13 \text{ TeV})$
 - higher b cross section
 - improvements in trigger and selection efficiencies

Run	Years	Lumi [fb ⁻¹]	√s [TeV]	σ _{bb} th [µb]	σ _{cc} th [μb]
1	2011-2012	~3	7, 8	70	1400
2	2015-2018	>4	13	150	2400

LHCb Integrated Recorded Luminosity in pp, 2010-2018

2018 (6.5 TeV): 0.35 /fb

[Nucl. Phys. B871 (2013) 1]

[JHEP 03 (2016) 159]

[JHEP 09 (2016) 013] [JHEP 03 (2017) 074]

XYZ states

Bound states of quarks were first proposed in 1964 by Gell-Mann and Zweig

- many different exotic charmonium-like states has been seen so far
- CDF/D0, Belle/BaBar, LHC, BESIII
- properties do not fit very well to the quarkonia picture

Many theoretical interpretations discussed

- \rightarrow conventional quarkonia
- \rightarrow multiquark states
- \rightarrow meson molecules
- \rightarrow hybrid mesons
- \rightarrow threshold effects

[Olsen, arXiv:1403.1254]

charmonium & charmonium-like mesons

No clear picture

 \rightarrow need experimental & theoretical effort to understand strong interaction dynamics that can cause their production and structure

MASS

XYZ states: production and taxonomy

Charmonium (cc) or bottomonium (bb) states studied at LHCb in 2 regimes

- \rightarrow prompt production in pp collisions
- → weak decays of beauty hadrons

~30 potentially exotic states observed since 2003

Tools

...

angular distributions, Dalitz and Argand plots

amplitude analysis, model independent approach

Commonly used nomenclature

- **P** pentaquarks
- X neutral resonances (most observed in B decays), positive parity
- Y states produced in the Initial State Radiation (ISR) processes, negative parity
- Z charmonium-like charged states (and their isospin partners)

X(3872): 1 fb⁻¹

 $B^+ \to X(3872)K^+, X(3872) \to J/\psi\rho^0, J/\psi \to \mu^+\mu^-, \rho^0 \to \pi^+\pi^-$ [PRL 110, 222001 (2013)] (amplitude analysis assuming $J^{PC} = 1^{++}$) **1 fb-1**

- observed by Belle in 2003
 [PRL 91 (2003) 262001]
 - \rightarrow revolution in exotic meson/baryon
 - \rightarrow seen now at 7 experiments
 - \rightarrow mass close to \textit{DD}^* threshold
- conventional charmonium?
 - $\rightarrow X \rightarrow J/\psi \ \rho/\omega$ violates isospin
 - $\rightarrow c\bar{c}$ not expected to have large BF to $(J/\psi \rho)$
- exotic interpretation

- $\rightarrow D^{o}D^{*o} = (c\overline{u})(\overline{c}u)$ molecular state, $c\overline{c}u\overline{u}$ tetraquark, $c\overline{c}g$ hybrid, glueball,...
- crucial: unambiguous quantum number J^{PC}

CDF determined quantum numbers to be $J^{PC} = 1^{++}$ or 2^{-+} [PRL 98 (2007) 132002]

X(3872): angular analysis with 3 fb⁻¹

[PRD 92 (2015) 011102]

X(3872): quantum numbers

$J^{PC} = 1^{++}$ confirmed!

- 3x larger sample than previous result
- decay mainly through S-wave (suggests compact state)
- D-wave negligible (< 4% @ 95% CL)
- $\rho(770) \rightarrow nn$ dominates
 - \rightarrow decay violates isospin (unlikely to be ordinary cc)

cost

Best fit to data with 1⁺⁺ hypothesis

X(3872): radiative decays

- $X(3872) \rightarrow J/\Psi\gamma, \Psi(2S)\gamma$ disfavors pure DD^* molecule by 4.4 σ (C = +1) [LHCb, NP B886 (2014) 665]
- consistent with cc state where the presence of the threshold lowers the mass and width

Charged partners of X(3872) predicted by some tetraquark models

- next step at LHCb
 - \rightarrow precision measurement of $m_{X(3872)}$ $m_{\Psi(2S)}$ and widths

$X \rightarrow J/\psi \phi$ states

• X(4140) - narrow near threshold structure in $B^+ \rightarrow (J/\psi \ \varphi) K^+$ (CDF, D0, CMS) [PRL 102 (2009) 242002, arXiv: 1101.6058] CDF [PL 734 (2014) 261] CMS [PR D89 (2014) 012004, PRL115 (2015) 232001] D0

• X(4274) - second relatively narrow $(J/\psi \phi)$ state (CDF, CMS)

Non-confirmation from other experiments (B-factories)

$X \rightarrow J/\psi \phi$ states

LHCb: Full amplitude fit to $B^+ \rightarrow J/\psi \ \varphi \ K^+$

- Run 1, 3fb⁻¹ (4289 \pm 151 candidates with minor background)
- 6D phase space: $m(\varphi K)$, helicity angles and $\Delta \varphi$ angles
- includes interferences between $B \to J/\psi K^*$, $K^* \to \phi K$ and $B \to X^0 K$, $X^0 \to J/\psi \phi$

4 structures visible: fit with BW amplitudes

- model with $K^*(\rightarrow K\varphi)$ cannot describe data
- X(4140) width significantly larger than previously determined (av. 15.7±6.3 MeV)
- X(4140), X(4274): J^{PC} incompatible with cusps and molecular bound states
- \rightarrow possible interpretation as tetraquark ccss (no light valence quarks) or χ_{c1}
- X(4500), X(4700): $D^{*+}{}_{s}$ - $D^{*-}{}_{s}$ or $\chi_{c1}(4P)$, $\chi_{c1}(5P)$

State	Sign. $[\sigma]$	Mass [MeV]	Width [MeV]	J^{PC}
X(4140)	8.4	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	1++
X(4274)	6.0	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56 \pm 11^{+8}_{-11}$	1++
X(4500)	6.1	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	0^{++}
X(4700)	5.6	$4704 \pm 10^{+14}_{-24}$	$120\pm 31^{+42}_{-33}$	0^{++}

[PRL 118 (2017) 02203] [PR D95 (2017) 012002]

08-06-2018

Z(4430)

Charged charmonium-like state in $B^0 \rightarrow \psi(2S)\pi K$

- originally found by Belle in $B \to (Z \to J/\psi \pi -) K$ and $B \to (Z \to \psi(2S)\pi -) K$ [PRL 100(2008) 142001, PR D80(2009) 031104, PR D88(2013) 074026]
- not confirmed by BaBar [PR D79 (2009) 112001]

Z(4430): LHCb confirmation

LHCb full amplitude analysis using 3 fb⁻¹

[PRL 112 (2014) 222002]

- ~25K $B^0 \rightarrow K^+ \psi(2S) \pi^-$ candidates (x10 Belle/BaBar)
- two different analysis approaches
 - \rightarrow 4D amplitude analysis (invariant masses, helicity and decay planes angles) to measure resonance parameters and J^P
 - \rightarrow model independent analysis based on the Legendre polynomial moments extracted from the Kn system (similar to what was done for pentaquark)

Background from sidebands (4% of combinatorial background in the signal region)

4D amplitude analysis fit

- $J^{P} = 1^{+}$ confirmed
- others assignment excluded with large significance
- mass close to $D^*D_1(2420)$ threshold
- excellent agreement between LHCb & Belle

	LHCb	Belle
M(Z) [MeV]	$4475\pm7^{+15}_{-25}$	$4485 \pm 22^{+28}_{-11}$
$\Gamma(Z)$ [MeV]	$172\pm13^{+37}_{-34}$	200^{+41+26}_{-46-35}
f _Z [%]	$5.9\pm0.9^{+1.5}_{-3.3}$	$10.3^{+3.0+4.3}_{-3.5-2.3}$
f ¹ _Z [%]	$16.7\pm1.6^{+2.6}_{-5.2}$	_
significance	$>$ 13.9 σ	$> 5.2\sigma$
J^P	1+	1+

Z(4430): resonant nature

Argand plot shows a clear resonant behaviour

- additional fit: Z amplitude with complex parameters in 6 $m_{\psi'n}$ bins
- phase rotation as expected for Breit-Wigner resonance

Results confirm Z(4430) with $J^{P}=1^{+}$ and its resonant behaviour

Z(4430): model independent

Can the Z(4430) be explained by K^* reflections?

- sideband subtract and efficiency correct $B^0 \to K^+ \psi(2S) \pi^-$ sample
- no assumptions on the K^* resonances: only its maximum J is limited
- angular structure of the $K\pi$ system extracted with Legendre polynomial moments

K^{*} reflections cannot describe properly the Z(4430) region

Among all tetraquark candidates the $Z(4430)^-$ is special \rightarrow being charged it cannot be a cc state

X(5568)?

[PRL 117 (2016) 022003] $X(5568)^{\pm} \rightarrow B^{0}{}_{s} \pi^{\pm}$ decay reported by D0 with significance of 3.9 σ [Phys. Rev. Lett. 117 (2016) 022003] 90

- large B_s production rate: $\rho^{D0}_{\chi} = (8.6 \pm 1.9 \pm 1.4)\%$
- minimal quark content bsud

$$M = 5567.8 \pm 2.9^{+0.9}_{-1.9} \text{MeV}/c^2$$

$$\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{MeV}/c^2$$

X(5568): CDF and D0 again

6.7σ

LHCb data sample of B^0_s

Very large and clean B_s^0 sample at LHCb (3 fb⁻¹)

- 20x the D0 sample
- cut-based selection to clean B^{0}_{s} sample
- mass constraints on J/ψ and D_s to improve mass resolution

B_s п mass spectrum

• B_s and π required to come from same PV

- signal shape is S-wave Breit-Wigner with parameters from D0
- polynomial for background

LHCb sees nothing!

 \rightarrow upper limit by integrating likelihood in physical (non-negative ρ) region

- similar result from CMS: CMS-PAS-BPH-16-002 (2016)

ρχ

Search for tetraquarks in $Y(1S)\mu^+\mu^-$ NEW! KC

• predictions on exotic state $bb\overline{bb}$ with mass < 2 × m(η_b) threshold

- $\rightarrow X_{bbbb}$ may decay into Y(1S) $\mu^+\mu^-$
- ightarrow 4 muons in the final state
- \rightarrow high sensitivity at LHCb!
- lattice QCD calculations do not find evidence in hadronic spectrum [PRD 97 (2018) 054505]
- first LHCb result with 2017 data

LHCb uses a dataset of 6.3 fb⁻¹ (2011-2017)

[LHCb-PAPER-2018-027]

Conclusions

- LHCb has made great progress in exotic spectroscopy
- Many new states discovered since the first observation of the X(3872)
- 1⁺⁺ confirmed for *X*(3872)
- Other exotic containing *cc* (or *bb*) quarks
 - \rightarrow Z(4430) in B⁰ \rightarrow $\Psi(2S)$ K⁻ π^+ is now well established tetraquark
 - \rightarrow recent LHCb results on 4 new $J/\psi\phi$ states
- Amplitude analysis crucial to interpret data
 - \rightarrow establish quantum numbers
 - \rightarrow exclude some production mechanisms, e.g. threshold, rescattering,...
- D0 claims a *bsud* state, but we do not!
- Data sample will be tripled in RUN II
- Other tetraquark candidates (no amplitude analysis so far)
 - \rightarrow Y(3940), Y(4260), Y(4350), Y(4660),... (Belle, BaBar, BES)

[LHCb-PAPER-2018-027]

