Conventional and exotic states in the DSE/BSE framework

Christian S. Fischer

Justus Liebig Universität Gießen

Reviews: Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]; Sanchis-Alepuz, Williams, CPC [1710.04903]

Bundesministerium für Bildung und Forschung

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

Overview

Introduction: dynamical quark masses

Conventional and exotic mesons

Transition form factors and decays

Hadrons: baryons, mesons and ... exotics !

DSE-approach: truncations

 $[S(p)]^{-1} = [-i\not p + M(p^2)]/Z_f(p^2)$

Rainbow-Ladder (RL):

Beyond the rainbow (BRL):

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

Quark dressing - comparison with lattice

$$S(p) = Z_f(p^2) \frac{-i\not p + M(p^2)}{p^2 + M^2(p^2)}$$

DSE: CF, Nickel, Williams, EPJ C 60 (2009) 47 Williams, CF, Heupel, PRD 93 (2016) 034026 Lattice: P. O. Bowman, et al PRD 71 (2005) 054507

Overview

Introduction: dynamical quark masses

Conventional and exotic mesons

Transition form factors and decays

Charmonium spectrum

good channels: I--,2++, 3--,...

CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015)

- acceptable channels: 0⁺
- clear deficiencies in other channels: missing spin-structure
- excited states fine ! (in good channels)

Charmonium spectrum

good channels: I--,2++, 3--,...

CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015)

- acceptable channels: 0⁺
- clear deficiencies in other channels: missing spin-structure
- excited states fine ! (in good channels)

- good channels (ground state): 0⁻⁺, I⁻⁻
- acceptable channels (ground state) : 2++, 3--,...
- clear deficiencies in other channels and excited states

- good channels (ground state): 0⁻⁺, 1⁻⁻
- acceptable channels (ground state) : 2++, 3--,...
- clear deficiencies in other channels and excited states

m [GeV]

CF, Kubrak, Williams, EPJA 50 (2014) 126 Williams, CF, Heupel, PRD93 (2016) 034026

- good channels (ground state): 0⁻⁺, I⁻⁻
- acceptable channels (ground state) : 2++, 3--,...
- clear deficiencies in other channels and excited states
- drastic improvement beyond rainbow-ladder !

Christian S. Fischer (University of Gießen)

CF, Kubrak, Williams, EPJA 50 (2014) 126 Williams, CF, Heupel, PRD93 (2016) 034026

- good channels (ground state): 0⁻⁺, I⁻⁻
- acceptable channels (ground state) : 2++, 3--,...
- clear deficiencies in other channels and excited states
- drastic improvement beyond rainbow-ladder !

Christian S. Fischer (University of Gießen)

Quantum numbers: non-relativistic vs relativistic

non-relativistic qq

relativistic qq

$$S: 1/2 \otimes 1/2 \to 0 \oplus 1$$
$$P: (-1)^{L+1}$$

$$\begin{split} \Gamma_{\pi}(P,p) &= \gamma_5 \left[F_1(P,p) & \text{s-wave} \\ &+ F_2(P,p) i \not P \\ &+ F_3(P,p) p P i \not p & \text{p-wave} \\ &+ F_4(P,p) [\not p, \not P] \right] \end{split}$$

(rest frame of π)

Bethe, Salpeter, Llewelyn-Smith 1950ies

conventional states more complicated
 'exotic' quantum numbers possible !

Hybrids as three-body states

- Similar to Faddeev-eq. for baryons except for glue
- Expectation: bound states around 800 MeV higher than qq
 with same quantum numbers

Working hypothesis: two-body BSE with lots of glue in kernel = three-body-BSE with glue in valence part

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

Glueballs from DSE/BSEs

Mixing of two-gluon amplitudes with ghost-antighost
 Probes analytical structure of gluons and ghosts

Results:
$$M(0^{++}) = 1.64 \,\text{GeV}$$

 $M(0^{-+}) = 4.53 \,\text{GeV}$

Sanchis-Alepuz, CF, Kellermann and von Smekal, PRD 92 (2015) 3, 034001

Heavy and light tetraquark

Wolfgang Gradl, BESIII, St Goar 2015

Related to details of underlying QCD forces between quarks

Heavy and light tetraquark

Tetraquarks from the four-body equation

Exact equation:

Two-body interactions

Three- and four-body interactions

Kvinikhidze & Khvedelidze, Theor. Math. Phys. 90 (1992) Heupel, Eichmann, CF, PLB 718 (2012) 545-549 Eichmann, CF, Heupel, PLB 753 (2016) 282-287

> Basic idea: solve four-body equation without any assumption on internal clustering

• Key elements: quark propagator and interaction kernels

Tetraquarks from the four-body equation

Exact equation:

Two-body interactions

Three- and four-body interactions

Kvinikhidze & Khvedelidze, Theor. Math. Phys. 90 (1992) Heupel, Eichmann, CF, PLB 718 (2012) 545-549 Eichmann, CF, Heupel, PLB 753 (2016) 282-287

> Basic idea: solve four-body equation without any assumption on internal clustering

• Key elements: quark propagator and interaction kernels

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

Mass evolution of tetraquark

- Resonance becomes bound state for large m_q
- Dynamical decision: meson clusters, not diquarks
- Results: $m_{\sigma} \sim 350 \,\mathrm{MeV}$

$$m_{\kappa} \sim 750 \,\mathrm{MeV}$$

 $m_{a_0,f_0} \sim 1080 \,{\rm MeV}$

 $m_{ss\bar{s}\bar{s}} \sim 1.5 \,\mathrm{GeV}$

$$m_{cc\bar{c}\bar{c}} \sim 5.7 \,\mathrm{GeV}$$

qualitatively similar to two-body framework

Heupel, Eichmann, CF, PLB 718 (2012) 545-549

Christian S. Fischer (University of Gießen)

Overview

Introduction: dynamical quark masses

Conventional and exotic mesons

Transition form factors and decays

Quark-photon vertex and pion form factors

Krassnigg, Schladming 2011; Maris, Tandy NPPS 161, 2006

Vector meson poles dynamically generated!

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

17 / 22

Quark-photon vertex and pion form factors

Krassnigg, Schladming 2011; Maris, Tandy NPPS 161, 2006

Vector meson poles dynamically generated!

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

17 / 22

Beyond rainbow-ladder: pion contributions in BSE-kernel:

Williams, arXiv:1804.11161

Beyond rainbow-ladder: pion contributions in BSE-kernel:

Williams, arXiv:1804.11161

Beyond rainbow-ladder: pion contributions in BSE-kernel:

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

Beyond rainbow-ladder: pion contributions in BSE-kernel:

Beyond rainbow-ladder: pion contributions in BSE-kernel:

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

Additional corrections known to increase mass by O(100) MeV

CF and Williams, PRL 103 (2009), 122001

Rare pion decay

Rare pion decay $\pi^0 \rightarrow e^+e^-$:

 $\frac{B(\pi_0 \to e^+ e^-)}{B(\pi_0 \to \gamma \gamma)} = 2\left(\frac{m\alpha_{em}}{\pi m_\pi}\right)^2 \sqrt{1 - 4\frac{m^2}{m_\pi^2}} |A(-m_\pi^2/4)|^2$

Usual: dispersive approach **DSE:** direct calculation

Collaboration	$B(\pi^0 \to e^+ e^-) [10^{-8}]$
Experiment $[1, 27, 28]$	6.87(36)
Dorokhov et al. $[2, 26]$	6.23(9)
Husek et al. $[35]$ (THS)	6.14(8)
Masjuan et al. $[29]$	6.23(5)
Our result (DR)	6.21(3)
Our result (direct)	6.22(3) • S

Weil, Eichmann, CF and Williams, PRD96 (2017) no.1, 014021 TFF: Eichmann, CF, Weil and Williams, PLB 774 (2017) 425

ame result as everybody else discrepancy with exp. remains

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

More rare decays

Christian S. Fischer (University of Gießen)

Conventional and exotic mesons

Internal dynamics very important !!

- Glueballs: $M(0^{++}) = 1.64 \text{ GeV}$
- Hybrids in qq-BRL
- Four-quarks states dominated by meson-meson configurations
- Dynamical description of σ as π - π resonance
- Dynamical width of rho-meson
- Decays of neutral pion

Backup

Rainbow-ladder model for quark-gluon interaction

scale Λ from f_{π_i} masses $m_u = m_d$, m_s from $m_{\pi_i} m_K$

- α_{UV} from perturbation theory
- **b** parameter η : band of results

Binosi, Chang, Papavassiliou and Roberts, PLB 742 (2015) 183

Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]

Rainbow-ladder model for quark-gluon interaction

scale Λ from f_{π_i} masses $m_u = m_d$, m_s from $m_{\pi_i} m_K$

- α_{UV} from perturbation theory
- **parameter** η : band of results

Binosi, Chang, Papavassiliou and Roberts, PLB 742 (2015) 183

Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]

Rainbow-ladder model for quark-gluon interaction

scale Λ from f_{π_i} masses $m_u = m_d$, m_s from $m_{\pi_i} m_K$

- α_{UV} from perturbation theory
- **parameter** η : band of results

Binosi, Chang, Papavassiliou and Roberts, PLB 742 (2015) 183

Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]

$$\pi = \pi$$

Pion cloud

Hadron level: πN-contributions to nucleon self-energy

Quark-level: π-contributions to quark self-energy

Pion cloud

Hadron level: πN-contributions to nucleon self-energy
 Quark-level: π-contributions to quark self-energy

quark-gluon vertex:

quark:

CF, D. Nickel and R. Williams, EPJC 60, 1434 (2008)

CF, D. Nickel and R. Williams, EPJC 60, 1434 (2008)

Bethe-Salpeter equation:

