Contribution ID: 41 Type: parallel talk

There is only one set of the correct values of f^F , f^D and f^S coupling constants in SU(3) invariant Lagrangian of the vector-meson-baryon interactions

Friday, 8 June 2018 16:25 (0:20)

Collaboration

Abstract content

One can prove, ther is generally eight various $\omega - \phi$ mixings forms in elementary particle physics, which on one side give different forms of the vector-meson-nucleon coupling constants through f^F , f^D and f^S in SU(3) invariant Lagrangian of the vector-meson-baryon interactions, and on the other side different signs of the universal vector-meson coupling constants f_ρ , f_ω and f_ϕ . Identical set of numerical values of f^F , f^D and f^S is evaluated only in that case, if the same $\omega - \phi$ mixing is applied to a derivation of the vector-meson-nucleon coupling constant forms and also to the signs of the universal vector-meson coupling constants f_ρ , f_ω and f_ϕ .

Primary author(s): BARTOŠ, Erik (Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia)

Co-author(s): ADAMUSCIN, Cyril (Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia); DUBNICKA, Stanislav (Inst of Physics SAS); DUBNICKOVA, Anna Zuzana (Comenius University)

Presenter(s): BARTOŠ, Erik (Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia)

Session Classification: Parallel Session B3