Ab-initio calculations of η -nuclear quasi bound states

Martin Schäfer

CTU in Prague, FNSPE, Prague, Czech Republic Nuclear Physics Institute, Řež, Czech Republic

N. Barnea, B. Bazak, E. Friedman, A. Gal, J. Mareš

 $15^{\rm th}$ International Workshop on Meson Physics Kraków, Poland $7^{\rm th}\mathchar`-12^{\rm th}$ June 2018

Introduction

• moderate attractive ηN interaction with scattering length $\Rightarrow \exists$ of η nuclear bound states (starting ¹²C) (Haider, Liu PLB 172 (1986) 257, PRC 34 (1986) 1845)

Numerous studies:

 chiral coupled channel models and K matrix methods (fitting πN and γN reaction data in N* (1535) resonance region) (bound states already in He isotopes)

No decisive experimental evidence so far

- $^{25}_{\eta}$ Mg ?, B_{η} = 13.1 ± 1.5MeV and Γ_{η} = 10.2 ± 3.0MeV (COSY-GEM, **PRC 79** (2009) 012201(R))
- ³/_ηHe not found (MAMI, PLB 709 (2012) 21; Xie et al., PRC 95 (2017) 015202)

⁴/_ηHe not found (WASA@COSY, PRC 87 (2013) 035204; NPA 959 (2017) 102)

ηN scattering amplitudes

- significant model dependence
- strong energy dependence

η in many-body systems

 Selfconsistent RMF predictions for the GW (left) and CS (right) models:

all η quasi-bound states in selected nuclei are shown; small widths - $\Gamma_{\eta} \leq 5~{\rm MeV}$

- (E. Friedman, A. Gal, J. Mareš, PLB 725 (2013) 334)
- (A. Cieplý, E. Friedman, A. Gal, J. Mareš, NPA 925 (2014) 126)

η in few-body systems

Faddeev (AGS) calculations of ηNNN and $\eta NNNN$ systems

- A. Fix, H Arenhövel, Phys. Rev. C 66 (2002) 024002
- A. Fix, O. Kolesnikov, PLB 772 (2017) 663
- A. Fix, O. Kolesnikov, Phys. Rev. C 97 (2018) 044001

Variational calculations

Hyperspherical basis

- N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345
- Stochastic Variational Method (SVM)
 - N. Barnea, E. Friedman, A. Gal, NPA 968 (2017) 35
 - N. Barnea, B. Bazak, E. Friedman, A, Gal, PLB 771 (2017) 297

Stochastic Variational Method

- (K. Varga et al., Nucl. Phys. A 571 (1994) 447)
- (K. Varga, Y. Suzuki, Phys. Rev. C 52 (1995) 2885)

optimizes variational basis in a random trial and error procedure

Variational basis states

• antisymmetrized correlated Gaussians (assuming L=0)

$$\psi_{SM_STM_T}(\mathbf{x}, \mathbf{A}) = \mathcal{A}\{G_{\mathbf{A}}(\mathbf{x})\chi_{SM_S}\eta_{TM_T}\}, \quad G_{\mathbf{A}}(\mathbf{x}) = e^{-\frac{1}{2}\mathbf{x}\mathbf{A}\mathbf{x}}$$

- Jacobi coordinates **x**, symmetric positive definite matrix of variational parameters A, spin χ_{SM_S} and isospin η_{TM_T} parts
- $\frac{N(N-1)}{2}$ real parameters for one basis state
- explicit antisymmetrization → computational complexity grows with N!

$$\mathcal{A} = \sum_{i=1}^{N!} p_i \mathcal{P}_i$$

Model

Variation procedure

Hamiltonian and wave function

$$\hat{H} = \hat{T}_{N} + \hat{T}_{\eta} + \hat{V}_{NN} + \hat{V}_{\eta N} - \hat{T}_{cm} , \quad \Psi = \sum_{i=1}^{K} c_{i} \psi_{SM_{S_{i}}TM_{T_{i}}}(\mathbf{x}, A_{i})$$

Step-by step optimization procedure

- starting with the 1st basis state $\psi_{SM_{S1}TM_{T1}}(\mathbf{x}, A_1)$
- optimization loop over variational parameters of the 1st basis state A_1
 - random selection of variational parameters A_1
 - solution of generalized eigenvalue problem
- saving the optimized set of randomly selected variational parameters A₁ (giving the lowest binding energy E_B)
- addition of the 2nd basis state $\psi_{SM_{S_2}TM_{T_2}}(\mathbf{x}, A_2)$
- optimization loop over variational parameters of the 2nd basis state \u03c8_{S2}TM_{T2}(x,A₂)

Variation procedure

Result

• wave function in a basis of optimized correlated Gaussians

$$\Psi = \sum_{i=1}^{K} c_i \psi_{SM_{S_i}TM_{T_i}}(\mathbf{x}, \mathbf{A}_i)$$

$V_{\rm NN}$ and $V_{\eta \rm N}$ potential input

NN two-body potentials

- Argonne AV4' potential (R. B. Wiringa, S. C. Pieper, Phys. Lett. 89 (2002) 182501)
- Minnesota MN potential (D. R. Thomson, M. LeMere, Y. C. Tang, Nucl. Phys A 286 (1977) 53)

ηN two-body potential

 complex energy-dependent local potential derived from the full chiral coupled-channel model

$$V_{\eta N}(E,r) = -rac{4\pi}{2\mu_{\eta N}}b(E)
ho_{\Lambda}(r) \;, \quad
ho_{\Lambda}(r) = \left(rac{\Lambda}{2\sqrt{\pi}}
ight)^3 \exp\left\{-rac{\Lambda^2 r^2}{4}
ight\}$$

- energy dependent b(E) fitted to phase shifts δ derived from $F_{\eta N}$ scattering amplitudes in the GW and CS models
- scale parameter Λ inversely proportional to the $V_{\eta N}$ range
- smaller the range ($\sim 1/\Lambda)$ the larger is resulting binding of η

V_{NN} and $V_{\eta N}$ potential input

Perturbative estimate of converison widths Γ_n

$$\Gamma_{\eta} = -2 \langle \Psi_{\rm gs} | {\rm Im} V_{\eta \rm N} | \Psi_{\rm gs} \rangle$$

Energy dependence of ηN potential

Selfconsistency

We are looking for such solution where $\langle \delta \sqrt{s} \rangle = \delta \sqrt{s}$.

$$\langle \delta \sqrt{s} \rangle = -\frac{B}{A} - \frac{A-1}{A} B_{\eta} - \xi_N \frac{A-1}{A} \langle T_{N:N} \rangle - \xi_\eta \left(\frac{A-1}{A}\right)^2 \langle T_{\eta} \rangle$$

(N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345)

$\eta { m NN}$, $\eta^{3} { m He}$ and $\eta^{4} { m He}$ systems

ηNN

unbound

(N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345)

$\eta^3 { m He}$

$V_{\eta N}$	V_{NN}	$\delta\sqrt{s_{sc}}$	B_η	Γ_η
GW, $\Lambda = 2$	MN	-9.385	0.099	1.144
	AV4'	-11.478	-0.028	0.769
GW, $\Lambda = 4$	MN	-13.392	0.990	3.252
	AV4'	-14.881	0.686	2.438
CS, $\Lambda = 2$	MN	-8.388	-0.217	0.057
CS, $\Lambda = 4$	MN	-8.712	-0.161	0.227

(N. Barnea, E. Friedman, A. Gal, NPA 968 (2017) 35)

$\eta { m NN}$, $\eta^{3} { m He}$ and $\eta^{4} { m He}$ systems

ηNN

unbound

(N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345)

		η^3 He			η^4 He		
$V_{\eta N}$	V _{NN}	$\delta\sqrt{s_{sc}}$	B_{η}	Γ_{η}	$\delta\sqrt{s_{sc}}$	B_{η}	Γ_{η}
GW, $\Lambda = 2$	MN	-9.385	0.099	1.144	-19.48	0.96	1.98
	AV4'	-11.478	-0.028	0.769	-23.65	0.38	1.21
GW, $\Lambda = 4$	MN	-13.392	0.990	3.252	-29.75	4.69	4.50
	AV4'	-14.881	0.686	2.438	-32.41	3.51	3.62
CS, $\Lambda = 2$	MN	-8.388	-0.217	0.057	-16.70	-0.16	0.13
CS, $\Lambda = 4$	MN	-8.712	-0.161	0.227	-19.25	0.47	0.90

- (N. Barnea, E. Friedman, A. Gal, NPA 968 (2017) 35)
- (N. Barnea, B. Bazak, E. Friedman, A. Gal, PLB 771 (2017) 297)

$\eta^{6} \mathrm{Li}$ system

 $CS \Lambda = 2$

 $CS\ \Lambda=4$

-16.19

-20.57

-0 17

1.06

0.82

1.28

- challenging computational problem (computational complexity scales with N!)
- large amount of spin-isospin configurations in the case of ⁶Li nuclear core (45) (only one valid in case of ²H, ³H, ³He, and ⁴He)
- \rightarrow new high performance SVM code was developed

One spin-isospi	in config	uration		All	spin-isospin	configu	rations	include	ed
 Minnesota Coulomb <i>E_B</i>(⁶Li)= 	NN pote -34.70 N	ential, n 1eV	0		 Minnesota included <i>E_B</i>(⁶Li)= 	-34.69 №	ential, C 1eV	Coulom	С
$ \begin{array}{c} \eta^{6} \text{Li} \\ \hline \text{GW } \Lambda = 2 \\ \hline \text{GW } \Lambda = 4 \end{array} $	$\delta\sqrt{s_{sc}}$ -21.49 -33.55	B_{η} 2.14 6.44	Γ_{η} 2.92 4.97		$ \begin{array}{c} \eta^{6} \text{Li} \\ \text{GW } \Lambda = 2 \\ \text{GW } \Lambda = 4 \end{array} $	$\delta\sqrt{s_{sc}}$ -21.47 -33.11	B_{η} 2.17 6.40]

 $CS \Lambda = 2$

 $CS \Lambda = 4$

-16.07

-21.08

-0.08

0.68

0.85

1.44

Results

Overall results

Imaginary part of the $V_{\eta N}$ potential - preliminary

Mean-value approximation : $\Gamma_\eta = -2 \langle \Psi_{\rm gs} | {\rm Im} V_{\eta N} | \Psi_{\rm gs} \rangle$

 \rightarrow

We can go further and solve generalized eigenvalue problem with complex Hamiltonian (imaginary part of the $V_{\eta N}$ included) using variationally selected $|\Psi_{gs}\rangle$ SVM basis states. This yields complex eigenenergy of the ground state E = Re(E) + iIm(E) and width $\Gamma_{\eta} = -2Im(E)$.

η^{3} He	B_{η} [MeV]	Γ_{η} [MeV]
GW $\Lambda = 2$	0.11	1.37
GW $\Lambda = 2$ (cmplx)	-0.25	1.32
GW $\Lambda = 4$	1.01	3.32
GW $\Lambda = 4$ (cmplx)	0.36	3.44
$\eta^4 \text{He}$	B_{η} [MeV]	Γ_{η} [MeV]
η^4 He GW $\Lambda = 2$	B_{η} [MeV] 0.97	$\frac{\Gamma_{\eta} \text{ [MeV]}}{2.17}$
$ \begin{array}{c} \eta^{4} \mathrm{He} \\ \\ \mathrm{GW} \ \Lambda = 2 \\ \\ \mathrm{GW} \ \Lambda = 2 \ (\mathrm{cmplx}) \end{array} $	$B_{\eta} [MeV] 0.97 0.77$	Γ _η [MeV] 2.17 2.22
$\begin{tabular}{c} & \eta^4 \mathrm{He} \\ & GW \ \Lambda = 2 \\ & GW \ \Lambda = 2 \ (cmplx) \\ & GW \ \Lambda = 4 \end{tabular}$	$\begin{array}{c} {\rm B}_{\eta} \ [{\rm MeV}] \\ 0.97 \\ 0.77 \\ 4.62 \end{array}$	$ \Gamma_{\eta} [MeV] 2.17 2.22 4.38 $

Table: Calculations has been performed for 600 basis states for both $\eta^3 He$ and $\eta^4 He$ systems. Coulomb interaction has been included.

Summary

- selfconsistent calculations of η NN, η NNN, η NNNN systems
 - ηd unbound, η bound in $^{3}{\rm He}$ for GW model, and in $^{4}{\rm He}$ for GW model and CS model with $\Lambda=4$
- new optimized SVM code developed
- selfconsistent ab-initio calculations of $\eta^6 {\rm Li}$ system using Minnesota $V_{\rm NN}$ potential

•
$$B_{\eta} = 2.17 \text{ MeV}$$
, $\Gamma_{\eta} = 3.00 \text{ MeV}$ (GW $\Lambda = 2$)

•
$$B_{\eta} = 6.40 \text{ MeV}$$
, $\Gamma_{\eta} = 4.90 \text{ MeV}$ (GW $\Lambda = 4$)

•
$$B_{\eta} = 0.68 \text{ MeV}$$
, $\Gamma_{\eta} = 1.44 \text{ MeV}$ (CS $\Lambda = 4$)

- unbound for CS $\mathrm{V}_{\eta\mathrm{N}}$ potential with $\Lambda=2$
- consistent with an RMF calculations

 $(B_\eta \approx 2.5 \text{ MeV}, \ \Gamma_\eta \approx 4 \text{ MeV})$

Next steps :

- calculations of $\eta^7 {
 m Li}$ in progress ightarrow few-body systems with L>0
- realistic interactions (AV6, AV8)
- heavier (9, 10-body) systems