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The A(1405) is one of the basic objects of strangeness nuclear physics.

Experimentally: a well-pronounced bump in the /7 22 missing mass spectrum
in various reactions, just below the K™ P threshold. PDG:

E—ig:(l405—25i)MeV

Theoretically: an | =0 quasi-bound state inthe KN —7 %2 system,
which decays into the 772 channel

Constructing any multichannel KN interaction — more or less reproducing
the scarce and old experimental data — one of the first questions is : “What

kind of A(1405) it produces?”

At present it is believed, that theoretically substantiated KN interactions
(potentials) — apart from the phenomenological ones — can be derived from
the chiral perturbation expansion of the SU(3) meson-baryon Lagrangian.

For these interactions the widely accepted answer to the above question is,
that the observed A(1405) is the result of interplay of two T-matrix poles.



The subject of the talk is to challenge this opinion

Starting point

Lowest order Weinberg-Tomozawa (WT) meson-baryon interaction term of the chiral
SU(3) Lagrangian (from the basic paper E. Oset, A. Ramos NPA 635(1998) 99):
Ci'
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Multichannel interaction, isospin basis, the channels:
11,2345 > [KN] [KN]  [22] 7 [22] " [2a]™

qi — meson c.m. momentum

in — meson c.m. energy qio = \/miz +qi2; mi(Mi) — meson(baryon) masses
Cj — SU(3) Clebsch-Gordan coefficients

f - pion decay constant



Dynamical framework:
(a) relativistic: BS equation, relativistic kinematics
(b) non-relativistic: LS equation, non-relativistic kinematics
Our choice is (b), having in mind application for N>2 systems

In practical calculations the original interaction is used with certain modifications:

— normalization + rel. correction to meson energies
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F, 1= ( K,7Z') - meson decay constants

— regularization, using separable potential representation with suitable
cut-off factors U, (qi) ensuring the convergence of the integrals



Finally, the potential V-- entering the LS equation

(o [T W) a1y = (au |V |, >+Zj 0 [Vie| 0. ) G, (0 W) (01, | T3 (W) ) da,
has the form

<qi ‘Vij ‘qj> = ui(qi)<Qi ‘Vij ‘qj>uj(qj) :ﬂ’lj(giA(qi)giB(qj)_i_ giB(qi)giA(qj))

which is a two-term multichannel separable potential with form-factors

0 (a) =U;(a); 9is(a) =u;(q;)7:(a;)

and coupling constant P Cij 1
" 64z°FF,
The non-relativistic propagator G has the form
oR 2
G.(q. ;W m —-—M,———+i¢ S
(W) = (W — 21 )" "W rie)

where K, = \/Z,us (W —m, —M,) isthe on-shell c.m. momemtum in channel S,



In order to simplify the solution of the dynamical equation -- both in (a) and (b)
approaches -- a commonly used approximation is to remove the inherent

( - dependence of the interaction, by replacing 0 in 7;(Q,) by its on-shell
value K; :

7:i(4) = 7i(k)=W —M,

This is the s.c. on-sell factorization approximation and as its result, the coupling
constant ﬂﬁ acquires the familiar energy-dependent factor (2W M -M. )
which turns out to be responsible for the appearance of a second pole in the

KN — 7Y system.

The multichennel two-term separable form of the potential allows an exact
solution of the LS equation both with the full and on-shell factorized WT
interactions thus offering a possibility to check the validity and/or consequences
of the on-shell factorization.

Some technical details of the solution:



Introducing the concise matrix notations for the momenta and form-factors:

\q(k)>‘[m1(fkl)> o >]:gA(B>>[glAf(B)> N O }

RS 0 [ge)

and also for the propagator

G, (q:W) - 0
GW)= ; . ;
0 - G(q,;W)

the 1] matrix element our potential can be written as (<q‘V‘q>) with

ij
\% Z‘gA>;‘~<gB‘+‘gB>}“<gA‘

( Bold face letters denote N X N matrices, N - number of channels ).

The T - matrix has the form :

T= ‘gA>TAA <gA‘+‘gA>TAB <gB‘+‘gB>TBA <gB‘+‘gB>TBB <gB "



where the T matrices are N XN submatrices of the 2N X 2N matrix M -1

1 -(g5|GW)|g,)  -(25|GW)|gg)

M ™= :(TAB TAA)
1 Tgg  Tpa
-<gA‘G(\N)‘gA> A -<gA‘G(W)‘gB>

The convergence of all Green’s function matrix elements can be ensured, if the
cut-off factors U.(q) are of the s. c. dipole type:

(.2
u,(q) [qz_l_ﬁiz]



In order to understand the nature of the on-shell factorization approximation,
let us consider one of these matrix elements, containing ‘gB>

(Gr), = ((2s]Gle)), 52“'IE(Q)qyf?;dq

On-shell factorization means, that y,(q) is replaced by y,(k;) =W — M, and
taken out from the integral. It can be seen, that for real positive k when
the integrand is singular, this might have a certain justification, however, for
complex ki , Which is the case, when complex pole positions are sought, the
approximation seems to be meaningless.



Performing this operation for all matrix elements, the on-shell T - matrix can be written as:
(k|Tlk) = (k|g, )7 (g, [K)
with

T=Tya TTagY TYTpa T VTpgY-

Here we introduced the matrix of on-shell » functions
k) = 0

0 ... 7n(.kn)

and used the fact, that on-shell we have <k‘gB> = <k‘gA>y. It can
be shown, that T can be written as

T =((xy+yx)‘l—GAA)l,

which coincides with the corresponding Nx N T - matrix of the on-shell
factorized potential U :

’Y:



U=|g,)(br+72)(g,|
Now we can compare the results obtained from the “full” WT potential

V=‘gA>k<gB‘+‘gB>K<gA‘

and its on-shell factorized, energy-dependent counterpart U

Both potentials depend on the same set of 7 adjustable parameters

oo B B Bas P Bas s

which have to be determined by fitting to experimental data. But before
proceeding to the discussion of fit results we make our most important
statement:

For any reasonable combination of the parameters, the “full” WT potential V
produces only one pole below and close to the KN thershold, which can

be associated with the A(1405), while U produces the familiar two poles:
one close to the threshold and a second one, much lower and broader.
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The potential parameters were fitted to the available experimental data:
six low-energy K~ P cross sections and three threshold branching ratios

o(K'p>7Z), R o(K'p—>7z°A)
/= oK po>7z2) " oK p-oz°A 72’
B oK po>za2,772)
- o (K™ p — all inelastic channels)

C

and the 1S level shift AE in kaonic hydrogen.

Results of the fit;
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Branching ratios and AE :

Y R, R, AE(eV)
U 2.35 0.664 0.194 302-294i
74 2.32 0.671 0.202 350-279i
(283+36)
+ + +
Exp 2.361£0.04 | 0.664£0.011 | 0.189+0.015 | (271246) i
The obtained parameter values (in MeV) :
Fr F B B, Bs B, Bs
U 107 109 | 1247 | 1622 | 919 959 443
"4 80.8 132 | 1094 | 960 516 537 629
Pole positions (MeV):
Z; Z;
U 1428 — 35 1384 -62i
74 1425-21i —




The fits could be probably further improved to obtain better parameter
sets, however, this was not the main aim of the work.

More or less equal quality fits can be obtained for both potentials U
and V , but for very different parameter values. This means, that U
can not be considered as an approximationto V — they are basically
different interactions.

While the on-shell properties of the corresponding T-matrices can be
made similar by suitable choice of the parameters, this is not true for
their analytical behavior in energy, which governs the pole positions.



Conclusions

It was shown, that the energy-dependence of the WT term of the KN
interaction, derived from the chiral SU(3) Lagrangian, and responsible for
the appearance of a second pole in the A(1405) region, follows from
the on-shell factorization approximation.

Without this approximation a new, chiral based, energy independent KN
potential was derived, which supports only one pole in the region of the

A(1405) resonance.

The widely accepted “two-pole structure” of the A(1405) state thus
becomes questionable.

In the calculations for N > 2 systems the use of the new potential
avoids the difficulties arising from the energy-dependence of the KN
interactions.



Most recent and accurate information on the A(1405) line-shape are the
CLAS photoproduction data. For their analysis at present we have the
semi-phenomenological formula of Roca and Oset. It contains a few
adjustable parameters and the T-matrix elements of the KN —7zX
potential. With its help we calculated the pure 1 =0 7°Z° missing

mass spectrum for the unchanged V potential. The preliminary results
for the lowest » energy bins:
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The complete analysis of CLAS data (including the charged states) is our next task



