Understanding d*(2380) in a chiral quark model

Fei HUANG University of Chinese Academy of Sciences, Beijing, China

Collaborators: Y.B. Dong, P.N. Shen, Z.Y. Zhang (IHEP, CAS)

Outline

- Motivation
- Experimental observation
- Status of theoretical investigations
- Results from chiral SU(3) quark model calculations
 - Mass & structure
 - Decay widths
 - Charge distribution
- Summary

Motivation

- Quarks are confined into hadrons instead of being "bare" & "alone"
- > Most hadron states are categorized into mesons $(q\overline{q})$ and baryons (qqq)
- Exotics not excluded by QCD
- 4- or 5-quark configurations claimed in heavy flavor physics
- Possible 6-quark systems: deuteron is the only confirmed one
- Any other BB molecules? Hexaquark states?

Experiments @ COSY

Exclusive

π

•π

4

 \diamond

WASA-at-COSY, PRL106(2011)242302

Signals in other reactions @ COSY

Evidence from np scattering

WASA-at-COSY & SAID DAC, PRL112(2014)202301

Unusual narrow width of d*

- 2464 ΔΔ 2380 d* 2309 ΔΝπ
- 2154 **ΝΝππ**

 $M_{d*} \approx 2380 \text{ MeV}$ $\approx 2M_{\Lambda} - 84 \text{ MeV}$ > M_{ΔNπ} > M_{NNππ} $> M_{NN}$ 2Γ_∧ ≈ 230 MeV Γ_{d*} ≈ 70 MeV < 1/3 × 2Γ_Δ ?

Theoretical $\Delta\Delta$ binding energies

Chiral SU(3) QM study, revisited

Structures & wave functions

- F. Huang, Z.Y. Zhang, P.N. Shen, W.L. Wang, Chin. Phys. C 39 (2015) 071001
- F. Huang, P.N. Shen, Y.B. Dong, Z.Y. Zhang, Sci. China-Phys. Mech. Astron. 59 (2016) 622002

Decay widths & charge distributions

- Y.B. Dong, P.N. Shen, F. Huang, Z.Y. Zhang, Phys. Rev. C 91 (2015) 064002
- Y.B. Dong, F. Huang, P.N. Shen, Z.Y. Zhang, Phys. Rev. C 94 (2015) 014003
- Y.B. Dong, F. Huang, P.N. Shen, Z.Y. Zhang, Phys. Lett. B 769 (2017) 223
- Y.B. Dong, F. Huang, P.N. Shen, Z.Y. Zhang, Phys. Rev. D 96 (2017) 094001

Other explanations in literature

- A. Gal & H. Garcilazo, NPA928(2014)73
 - > Dynamically generated $\Delta N\pi$ 3-body resonance
 - Binding energy: 101 MeV
 - Width: 66 MeV

 $B_{exp} \approx 84 \text{ MeV}$ $\Gamma_{exp} \approx 70 \text{ MeV}$

- + H.X. Huang, J.L. Ping, & F. Wang, PRC89(2014)034001
 - $\succ \Delta\Delta$ bound state
 - Binding energy: 71 MeV (ChQM), 107 MeV (QDCSM)
 - Width: 150 MeV (ChQM), 110 MeV (QDCSM)
- + H.X. Chen, E.L. Cui, & W. Chen et al., PRC91(2015)025204
 - QCD sum rule analysis
 - Mass: 2.4±0.2 GeV

The Chiral SU(3) quark model

SU(2) linear
$$\sigma$$
 modelChiral SU(3) quark model $\Sigma = \sigma + i \sum_{a=1}^{3} \tau_a \pi_a$ $\Sigma = \sum_{a=0}^{8} \lambda_a \sigma_a + i \sum_{a=0}^{8} \lambda_a \pi_a$ $\mathcal{L}_I^{ch} = -g \left(\bar{\psi}_L \Sigma \psi_R + \bar{\psi}_R \Sigma^{\dagger} \psi_L \right)$ $\mathcal{L}_I^{ch} = -g \left(\bar{\psi}_L \Sigma \psi_R + \bar{\psi}_R \Sigma^{\dagger} \psi_L \right)$ $= -g \bar{\psi} \left(\sigma + i \gamma_5 \sum_{a=1}^{3} \tau_a \pi_a \right) \psi$ $= -g \bar{\psi} \left(\sum_{a=0}^{8} \lambda_a \sigma_a + i \gamma_5 \sum_{a=0}^{8} \lambda_a \pi_a \right) \psi$

- Chiral symmetry restored by introducing S & PS fields
- CQ obtains constituent mass via spontaneous CSB
- GB gets mass via explicit CSB caused by tiny current quark mass

Hamiltonian of Chiral QM

Total Hamiltonian for 6q systems:

$$H = \sum_{i=1}^{6} \left(m_i + \frac{\bar{P}_i^2}{2m_i} \right) - T_{\rm cm} + \sum_{1=i< j}^{6} \left(V_{ij}^{\rm conf} + V_{ij}^{\rm OGE} + V_{ij}^{\rm ch} \right)$$

Ch. SU(3) QM:

$$V_{ij}^{
m ch} = \sum_{a=0}^{8} V_{ij}^{\sigma_a} + \sum_{a=0}^{8} V_{ij}^{\pi_a}$$

Ext. Ch. SU(3) QM:

$$V^{
m ch}_{ij} = \sum_{a=0}^8 V^{\sigma_a}_{ij} + \sum_{a=0}^8 V^{\pi_a}_{ij} + \sum_{a=0}^8 V^{
ho_a}_{ij}$$

Note: OGE almost completely reduced by including VMEs.

Determination of parameters

> Input: $m_u = m_d = 313 \text{ MeV},$ $b_u = 0.5 \text{ fm} (SU(3)) \& 0.45 \text{ fm} (ex. SU(3))$

Coupling between quark & chiral fields:

$$\frac{g_{\rm ch}^2}{4\pi} = \left(\frac{3}{5}\right)^2 \frac{g_{NN\pi}^2}{4\pi} \frac{m_u^2}{m_N^2}, \qquad \frac{g_{NN\pi}^2}{4\pi} = 13.67$$

> Mass of mesons: experimental values except for m_{σ}

- > Coupling constant for OGE: $g_u \propto m_{\Delta} m_N$
- Confinement strength & zero point energy:

$$\frac{\partial m_N}{\partial b_u} = 0, \qquad m_N = 939 \text{ MeV}$$

RGM study of $\Delta\Delta$ -CC

RGM wave functions for $\Delta\Delta$ -CC system:

$$\Psi_{6q} = \mathcal{A} \Big[\hat{\phi}_{\Delta}^{\text{int}} \left(\vec{\xi}_{1}, \vec{\xi}_{2} \right) \hat{\phi}_{\Delta}^{\text{int}} \left(\vec{\xi}_{4}, \vec{\xi}_{5} \right) \eta_{\Delta\Delta} (\vec{r}) \Big]_{S=3, I=0, C=(00)} \\ + \mathcal{A} \Big[\hat{\phi}_{C}^{\text{int}} \left(\vec{\xi}_{1}, \vec{\xi}_{2} \right) \hat{\phi}_{C}^{\text{int}} \left(\vec{\xi}_{4}, \vec{\xi}_{5} \right) \eta_{CC} (\vec{r}) \Big]_{S=3, I=0, C=(00)} \\ \Delta: \quad (0S)^{3} [3]_{\text{orb}}, S = \frac{3}{2}, I = \frac{3}{2}, C = (00) \\ C: \quad (0S)^{3} [3]_{\text{orb}}, S = \frac{3}{2}, I = \frac{1}{2}, C = (11)$$

RGM equation for a bound state problem:

$$\langle \delta \psi_{6q} | H - E | \psi_{6q} \rangle = 0$$

Calculated d* mass

Without CC: BE $\approx 29 - 62$ MeV

		$\Delta\Delta ~(L=0,2)$			
	SU(3)	Ext. $SU(3)$	Ext. $SU(3)$		
		(f/g=0)	(f/g=2/3)		
B (MeV)	28.96	62.28	47.90		
RMS (fm)	0.96	0.80	0.84		

With CC: BE $\approx 47 - 84$ MeV

	$\Delta\Delta-{ m CC}(L=0,2)$				
	SU(3)	Ext. $SU(3)$	Ext. SU(3)		
		(f/g=0)	(f/g=2/3)		
B (MeV)	47.27	83.95	70.25		
RMS (fm)	0.88	0.76	0.78		
$(\Delta\Delta)_{L=0}~(\%)$	33.11	31.22	32.51		
$(\Delta\Delta)_{L=2}~(\%)$	0.62	0.45	0.51		
$(CC)_{L=0}$ (%)	66.25	68.33	66.98		
$(CC)_{L=2}$ (%)	0.02	0.00	0.00		

- d*: a deeply bound & compact ΔΔ-CC state
- Coupling to CC plays a significant role
- Predicted binding energy close to experimental value

 $M_{d^{\star}}\approx 2M_{\Delta}-84~MeV$

Distinctive features of $\Delta\Delta$: why

Quark-exchange effect:

Short-range interaction:

$$\boldsymbol{\psi}_{6q} = \mathcal{A}\left[\hat{\phi}^{\text{int}}\left(\boldsymbol{\bar{\xi}}_{1},\boldsymbol{\bar{\xi}}_{2}\right)\,\hat{\phi}^{\text{int}}\left(\boldsymbol{\bar{\xi}}_{4},\boldsymbol{\bar{\xi}}_{5}\right)\,\eta(\boldsymbol{r})\right]$$

- For 6 identical quarks: $\mathcal{A} = 1 9P_{36}$
- Quark-exchange effect: $\langle \mathcal{A}^{sfc} \rangle \in [0, 2]$

$$(\Delta\Delta)_{S=3,I=0}: \quad \langle \Delta\Delta | \mathcal{A}^{sfc} | \Delta\Delta \rangle_{S=3,I=0} = 2$$

Strongly "attractive"!

Oka & Yazaki, PLB90(1980)41: For non-strange BB systems, $(\Delta \Delta)_{S=3,l=0}$ is the only one in which OGE provides attraction at short-range.

Deuteron:
$$\langle NN | \mathcal{A}^{sfc} | NN \rangle_{S=1, I=0} = 10/9 \sim 1$$

OGE: repulsive + VMEs: repulsive

OGE: attractive + VMEs: attractive

Channel wave functions

Channel wave functions (Relative wave functions in physical basis):

$$\begin{split} \boldsymbol{\chi}_{\Delta\Delta}(\vec{r}) &= \left\langle \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| \boldsymbol{\psi}_{6q} \right\rangle \\ &= \left\langle \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| (1-9P_{36}) \left[\hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \, \eta_{\Delta\Delta}(\vec{r}) \right] \right\rangle \\ &- 9 \left\langle \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| P_{36} \left[\hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \, \eta_{CC}\left(\vec{r}\right) \right] \right\rangle \\ \boldsymbol{\chi}_{CC}(\vec{r}) &= \left\langle \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| \boldsymbol{\psi}_{6q} \right\rangle \\ &= \left\langle \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| (1-9P_{36}) \left[\hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \, \eta_{CC}\left(\vec{r}\right) \right] \right\rangle \\ &- 9 \left\langle \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| P_{36} \left[\hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \, \eta_{\Delta\Delta}\left(\vec{r}\right) \right] \right\rangle \end{split}$$

Wave function of d*

Reorganize the wave function of d*:

$$\Psi_{d^*} = |\Delta\Delta\rangle \chi_{\Delta\Delta}(\vec{r}) + |CC\rangle \chi_{CC}(\vec{r})$$
$$= \sum_{L=0,2} \left[|\Delta\Delta\rangle \frac{\chi_{\Delta\Delta}^L(r)}{r} + |CC\rangle \frac{\chi_{CC}^L(r)}{r} \right] Y_{L0}(\hat{r})$$

 $\Delta\Delta$ & CC parts are now orthogonal to each other:

 $\langle CC | \Delta \Delta \rangle = 0$

 $\chi_{\Delta\Delta}$, χ_{CC} are used to discuss the spatial distribution of d^{*} and its individual components of $\Delta\Delta$ & CC

Relative wave function

Unlike deuteron, d^{*} is rather narrowly distributed!

CC component

d* has a CC fraction of about 2/3

		$\Delta\Delta - { m CC} \left(L = 0, 2 ight)$			
	SU(3)	Ext. $SU(3)$	Ext. $SU(3)$		
		(f/g=0)	(f/g=2/3)		
B (MeV)	47.27	83.95	70.25		
RMS (fm)	0.88	0.76	0.78		
$(\Delta\Delta)_{L=0}~(\%)$	33.11	31.22	32.51		
$(\Delta\Delta)_{L=2}~(\%)$	0.62	0.45	0.51		
$(CC)_{L=0}$ (%)	66.25	68.33	66.98		
$(CC)_{L=2}$ (%)	0.02	0.00	0.00		

> A pure hexaquark state of $\Delta\Delta$ system has 4/5 CC fraction

$$[6]_{\rm orb}[33]_{IS=03} = \sqrt{\frac{1}{5}} |\Delta\Delta\rangle_{IS=03} + \sqrt{\frac{4}{5}} |CC\rangle_{IS=03}$$

d* is a hexaquark-dominated exotic state!

2π-decay

Given the $qq\pi$ vertex & wave functions of N, Δ , d^{*} & d, the amplitudes & further decay widths can be calculated explicitly.

$$\begin{split} \mathcal{H} &= g_{qq\pi} \vec{\sigma} \cdot \vec{k}_{\pi} \tau \cdot \phi \times \frac{1}{(2\pi)^{3/2} \sqrt{2\omega_{\pi}}}, \\ \Gamma_{d^* \to d\pi^0 \pi^0} &= \frac{1}{2!} \int d^3 k_1 d^3 k_2 d^3 p_d(2\pi) \delta^3 (\vec{k}_1 + \vec{k}_2 + \vec{p}_d) \delta(\omega_{k_1} + \omega_{k_2} + E_{p_d} - M_{d^*}) \mid \overline{\mathcal{M}}_{if}^{\pi^0 \pi^0} \mid^2 \\ \Gamma_{d^* \to pn\pi^0 \pi^0} &= \frac{1}{2!2!} \int d^3 k_1 d^3 k_2 d^3 p_1(2\pi) \delta(\Delta E) \mid \overline{\mathcal{M}}(k_1, k_2; p_1) \mid^2, \end{split}$$

Widths for 2π-decay

	Theor. (MeV)	Expt. (MeV)
$d^* o d\pi^+\pi^-$	16.8	16.7
$d^* ightarrow d\pi^0 \pi^0$	9.2	10.2
$d^* ightarrow pn \pi^+ \pi^-$	20.6	21.8
$d^* ightarrow pn \pi^0 \pi^0$	9.6	8.7
$d^* o pp \pi^0 \pi^-$	3.5	4.4
$d^* ightarrow nn \pi^0 \pi^+$	3.5	4.4
$d^* \rightarrow pn$	8.7	8.7
Total	71.9	74.9

Single π decay

$$\mathcal{M}_{d^* \to NN\pi}^{(a)} = \int d^3q \frac{\Psi_{d^*}(q)}{2\omega_{k_E}\sqrt{2\omega_k}(2\pi)^6} \delta^3 \left(p_{N'_2} + p_{N'_1} + k - p_{\Delta_1} - p_{\Delta_2}\right) \\ \times \tilde{\mathcal{M}}_{\pi(k_E)N(p'_2) \to N(p_2)} \mathcal{D}_{af} \tilde{\mathcal{M}}_{\Delta_1 \to \pi(k_E)N(p_1)} \mathcal{D}_{ai} \tilde{\mathcal{M}}_{\Delta_2 \to \pi(k)N(p'_2)}$$

$$\mathcal{D}_{af} = \frac{1}{M_{d^*} - \omega(\vec{k}) - \omega(\vec{k}_E) - E_N(\vec{p}_1) - E_N(\vec{p}_2')}$$
$$\mathcal{D}_{ai} = \frac{1}{M_{d^*} - \omega(\vec{k}) - E_{\Delta_1}(\vec{q}) - E_N(\vec{p}_2')}.$$

Results for single π decay

The WASA-at-COSY Collaboration / Physics Letters B 774 (2017) 599–607

Exclusive measurements of the quasi-free $pn \rightarrow pp\pi^-$ and $pp \rightarrow pp\pi^0$ reactions have been performed by means of *pd* collisions at $T_p = 1.2$ GeV using the WASA detector setup at COSY. Total and differential cross sections have been obtained covering the energy region $T_p = 0.95 - 1.3$ GeV ($\sqrt{s} = 2.3 - 2.46$ GeV), which includes the regions of $\Delta(1232)$, $N^*(1440)$ and $d^*(2380)$ resonance excitations. From these measurements the isoscalar single-pion production has been extracted, for which data existed so far only below $T_p = 1$ GeV. We observe a substantial increase of this cross section around 1 GeV, which can be related to the Roper resonance $N^*(1440)$, the strength of which shows up isolated from the Δ resonance in the isoscalar $(N\pi)_{I=0}$ invariant-mass spectrum. No evidence for a decay of the dibaryon resonance $d^*(2380)$ into the isoscalar $(NN\pi)_{I=0}$ channel is found. An upper limit of 180 µb (90% C.L.) corresponding to a branching ratio of 9% has been deduced.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

d* charge distribution results

Summary

- d*(2380) has been reported by WASA-at-COSY with an unusual narrow width (Γ ≈ 70 MeV)
- ΔΔ-CC with I(J^P)=0(3⁺) is dynamically investigated in our chiral SU(3) quark model and its extended version
- d^{*} has a CC fraction of about 2/3 → it is a hexaquarkdominated exotic state
- Our calculated binding energy & decay widths consistent with the data
- Charge distributions can be used to test different scenarios for the structure of d*(2380)
- More experiments & theoretical works needed

THANK YOU FOR YOUR PATIENCE!

Our prediction in 1999

X. Q. Yuan, Z. Y. Zhang, Y. W. Yu, and P. N. Shen, Phys. Rev. C 60, 045203 (1999).

TABLE II. Binding energy B and rms \overline{R} of the deltaron $B = -(E_{\text{deltaron}} - 2M_{\Delta}), \ \overline{R} = \sqrt{\langle r^2 \rangle}.$ $\frac{\Delta\Delta}{CC}$ (L=0) $\Delta\Delta$ (L=0) $\Delta\Delta$ $CC \setminus +2$ $\Delta\Delta(L=0)$ 29.9 42.0 B (MeV) 41.0 29.8 0.92 0.92 0.87 0.87 OGE \overline{R} (fm) 62.6 79.7 B (MeV) 50.2 68.6 30-60 40-80 0.86 0.84 $OGE + \pi, \sigma$ 0.87 0.83 \overline{R} (fm) 22.5 B (MeV) 18.4 31.7 37.3 OGE + SU(3)0.92 0.92 1.01 1.00 \overline{R} (fm)

- Binding energy: 40 ~ 80 MeV
- CC: 10 ~ 20 MeV increase in binding energy

Argument of Bashkanov et al.

M. Bashkanov, S. J. Brodsky, and H. Clement, Phys. Lett. B 727, 438 (2013).

- □ $Br(d^* \rightarrow \Delta \Delta)/Br(d^* \rightarrow pn) = 9:1$, but a deltaron with binding energy 90 MeV would have width ~160 MeV
- d* must be of an unconventional origin, possibly indicating a genuine six-quark nature
- **Two possible six-quark structures for** $I(J^P)=O(3^+)$ **:**

$$\left| \psi_{(0s)^{6}}^{[6]_{\text{orb}}[33]_{\text{IS}}} \right\rangle = \sqrt{\frac{1}{5}} \left| \Delta \Delta \right\rangle + \sqrt{\frac{4}{5}} \left| CC \right\rangle$$
$$\left| \psi_{(0s)^{4}(0p)^{2}}^{[42]_{\text{orb}}[33]_{\text{IS}}} \right\rangle = \sqrt{\frac{4}{5}} \left| \Delta \Delta \right\rangle - \sqrt{\frac{1}{5}} \left| CC \right\rangle$$

It is nature to assign d* to the former one — six-quark predominantly "hidden color state"

Resonating group method (RGM)

- RGM: well-established method for studying interactions between two composite particles; center of mass motion treated correctly
- Six-quark wave function in C.M. frame:

$$\Psi_{6q} = \mathcal{A}\left[\hat{\Phi}_{A}^{int}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right)\hat{\Phi}_{B}^{int}\left(\vec{\xi}_{3},\vec{\xi}_{4}\right)\chi\left(\vec{R}_{AB}\right)\right]_{STY}$$
$$\mathcal{A} \equiv \sum_{i\in A, j\in B}\left(1-P_{ij}^{OSFC}\right)$$

 Cluster wave functions in coordinate space: Gaussian
 Relative wave function determined by dynamics of the 6quark system:

$$\langle \delta \Psi_{6q} | H - E | \Psi_{6q} \rangle = 0$$

Six-quark diagrams in RGM

Parameter values

All parameters fixed already in the study of NN scattering. No additional parameters introduced for $\Delta\Delta$ system.

TABLE I. Model parameters. The meson masses and the cutoff masses: $m_{\sigma'} = 980$ MeV, $m_{\epsilon} = 980$ MeV, $m_{\pi} = 138$ MeV, $m_{\eta} = 549$ MeV, $m_{\eta'} = 957$ MeV, $m_{\rho} = 770$ MeV, $m_{\omega} = 782$ MeV, and $\Lambda = 1100$ MeV.

	Ch. $SU(3)$	Ext.	Ch. SU(3)	
		f/g=0	f/g=2/3	
$\overline{b_u}$ (fm)	0.5	0.45	0.45	
$m_u ({ m MeV})$	313	313	313	
g_u^2	0.766	0.056	0.132	
$g_{ m ch}$	2.621	2.621	2.621	
$g_{ m chv}$		2.351	1.973	
$m_\sigma~({ m MeV})$	595	535	547	
$a^c_{uu}~({ m MeV/fm^2})$	46.6	44.5	39.1	
$a^{c0}_{uu}~({ m MeV})$	-42.4	-72.3	-62.9	

Masses of baryons & deuteron

The masses of baryons

	N	Σ	Ξ	٨	Δ	Σ*	Ξ*	Ω
Theor.	939	1194	1335	1116	1232	1370	1511	1656
Expt.	939	1194	1319	1116	1232	1385	1530	1672

The binding energy of deuteron

	Chiral SU(3) quark model	Extended chiral $SU(3)$ quark model		
		$f_{chv}/g_{chv} = 0$	$f_{chv}/g_{chv} = 2/3$	
$B_{deu} \ ({ m MeV})$	2.13	2.19	2.14	

NN phase shifts

34

RGM wave functions

RGM wave functions:

$$\Psi_{6q} = (1 - 9P_{36}) \left[\hat{\phi}_{\Delta}^{\text{int}} \left(\vec{\xi}_{1}, \vec{\xi}_{2} \right) \hat{\phi}_{\Delta}^{\text{int}} \left(\vec{\xi}_{4}, \vec{\xi}_{5} \right) \eta_{\Delta\Delta} \left(\vec{r} \right) \right]_{S=3, I=0, C=(00)} \\ + (1 - 9P_{36}) \left[\hat{\phi}_{C}^{\text{int}} \left(\vec{\xi}_{1}, \vec{\xi}_{2} \right) \hat{\phi}_{C}^{\text{int}} \left(\vec{\xi}_{4}, \vec{\xi}_{5} \right) \eta_{CC} \left(\vec{r} \right) \right]_{S=3, I=0, C=(00)}$$

Terms on r.h.s. not orthogonal to each other:

$$\left\langle \Delta \Delta \left| P_{36}^{sfc} \right| \Delta \Delta \right\rangle_{S=3, I=0} = -\frac{1}{9}$$
$$\left\langle CC \left| P_{36}^{sfc} \right| \Delta \Delta \right\rangle_{S=3, I=0} = -\frac{4}{9}$$
$$\left\langle CC \left| P_{36}^{sfc} \right| CC \right\rangle_{S=3, I=0} = -\frac{7}{9}$$

Not suitable for clarification of $\Delta\Delta$, CC components in d^{*}

d* charge distribution calculation

