Excitation of $d^*(2380)$ dibaryon in the coherent $pd \rightarrow pd\pi\pi$ channel and other dibaryon studies at ANKE

Dmitry Tsirkov for the ANKE collaboration

Joint Institute for Nuclear Research, Dubna cyrkov@jinr.ru

15th International Workshop on Meson Physics Kraków, June 8 2018

First predictions of dibaryon resonances

First classification based on SU(6) symmetry

 D_{IJ} , where I is isospin J is ang. momentum

R.J. Oakes, Phys. Rev. 131, 2239 (1963)
F.J. Dyson and N.H. Xuong, Phys. Rev. Lett. 13, 815 (1964)

Dibaryon resonances in $pp \to d\pi^+$

Dibaryon contributions into ${}^{1}D_{2}$ and ${}^{3}F_{3}$

M.N. Platonova, V.I. Kukulin, Nucl. Phys. A 946, 117 (2016)

Dibaryon resonances in $pp \to \{pp\}_s \pi^0$

Dibaryon resonances in $pp \to \{pp\}_s \pi^0$

Measured cross section $d\sigma/d\Omega$ and analyzing power A_y

$d^*(2380)$ dibaryon resonance

For the first time a cross section peak associated with the ABC effect was observed at Saturne [Nucl. Phys. B 67, 1 (1973)], but didn't draw particular attention.

WASA studies have found that it is a manifestation of the $d^*(2380)$ dibaryon resonance D_{03}^+ , a candidate for the true dibaryon.

Contribution of "true" dibaryons into $d^*(2380)$

Chiral constituent-quark models: $\approx 2/3$ hidden-color contribution Y. Dong et al., Phys. Rev. C **94**, 014003 (2016); Qi-F. Lu et al., Phys. Rev. D **96**, 014036 (2017).

Traditional meson-baryon interpretation
J.A. Niskanen, Phys. Rev. C 95, 054002 (2017);
A. Gal, Phys. Lett. B 769, 436 (2017);
A. Gal, arXiv:1803.08788 [nucl-th] (2018).

Reaction mechanisms with $d^*(2380)$ excitation

Experimental setup

COSY synchrotron

ANKE spectrometer

Experimental setup

- ► Forward detector of the ANKE spectrometer at the synchrotron COSY–Jülich
- ▶ Proton beam, deuterium target

• Differential cross section $d\sigma/d\Omega$

Selecting pd pairs

Missing mass distributions

Spectra of the invariant mass $M_{d\pi\pi}$

Charge-3 D_{21}^+ dibaryon resonance

P. Adlarson et al., WASA@COSY, "An isotensor dibaryon in the $pp \rightarrow pp\pi^+\pi^-$ reaction?", arXiv:1803.03193 [nucl-ex] (March 2018)

Charge-3 D_{21}^+ dibaryon resonance at ANKE?

Possible indication on observation of D_{21} dibaryon in $pp \to D_{21}\pi^- \to \{pp\}_s \pi^+\pi^-$ channel

Known dibaryons

 D_{01}^+ deuteron $D_{10}^+ {}^1S_0$ diproton, ${}^1S_0 \{pn\}_s$ $D_{10}^{-} {}^{3}P_{0} (pp \to \{pp\}_{s}\pi^{0})$ $D_{03}^+ d^*(2380) \ (pd \to pd\pi\pi)$ $D_{12}^{+} {}^{1}D_{2} (pp \to d\pi^{+})$ $D_{12}^{-} {}^{3}P_{2} (pp \to d\pi^{+} / \{pp\}_{s}\pi^{0})$ D_{21}^+ charge-3 $(pp \rightarrow pp\pi^+\pi^-)$ $D_{13}^{-} {}^{3}F_{3} (pp \to d\pi^{+})$ D_{30} charge-4 (???)

ABC effect

The ABC effect is the narrow enhancement in the $M_{\pi\pi}$ invariant mass spectra of $\pi\pi$ pairs near the threshold; it's named after [A. Abashian, N.E. Booth and K.M. Crowe, Phys. Rev. Lett. 5, 258 (1960)].

Main features

- \blacktriangleright complicated structure of the $\pi\pi$ invariant mass spectra
- isoscalar nature of the $\pi\pi$ pair
- ▶ presence of the effect only in reactions accompanied by production of the bound light nucleus: d, ³He, ⁴He
- ▶ strong peaking of angular distribution in the forward and backward direction
- ► resonance behavior of the cross section in dependence on the initial energy

Spectra of invariant mass $M_{\pi\pi}$ at 1.1 GeV in different $M_{d\pi\pi}$ intervals. The curves show decomposition of the spectra into the Gaussian and phase space contributions.

Parameters of the ABC peak in different $M_{d\pi\pi}$ intervals

Possible origin of the ABC peak

M.N. Platonova, V.I. Kukulin, Phys. Rev. C 87, 025202 (2013)

$$D_{03} \rightarrow N + N$$

$$\rightarrow \dots$$

$$\rightarrow D_{12} + \pi \rightarrow N + N + \pi$$

$$\rightarrow D_{12} + \pi \rightarrow \dots$$

$$\rightarrow D_{12} + \pi \rightarrow d + (\pi + \pi)_{I=0}$$

$$\rightarrow d + \sigma \rightarrow d + (\pi + \pi)_{I=0}$$

Here: $m_{\sigma} \approx 300 \text{ MeV},$ $\Gamma_{\sigma} \approx 100 \text{ MeV}$ PDG: $m_{\sigma} \approx 400\text{--}550 \text{ MeV},$ $\Gamma_{\sigma} \approx 400\text{--}700 \text{ MeV}$

Possible origin of the ABC peak

Outlook

Possible observation of $N^*(1535)N$ dibaryon in $pd \rightarrow p\{N^*(1535)N\} \rightarrow pd\eta$ channel

 $M_{d\eta}$ peak position close to $N^*(1535)N$ mass

Outlook

A second peak in the energy spectrum of the $pp \to \{pp\}_s \pi^0$ forward cross section.

 $\{N\Delta(1700)\}$? $\{\Delta(1232)N^*(1440)\}$? Or something else?

Summary

- Dibaryon resonances are a well established experimental fact. The data on their spectroscopy are being accumulated;
- ► The ANKE@COSY experiments made an noticeable contribution to the emerging spectroscopy of dibaryon resonances:
 - Parameters of ${}^{3}P_{2}$ (D_{13}^{-}) resonance were specified;
 - An earlier unobserved ${}^{3}P_{0}$ (D_{10}^{-}) resonance was detected;
 - A new method for excitation of the ${}^{3}D_{3}$ (D_{03}^{+}) resonance was studied;
- ► A new interpretation of the ABC effect was proposed: the manifestation of the successive production of two pions in quasi-collinear kinematics and the presence of a dibaryon resonance between them;
- ▶ Further studies on dibaryon resonances are in progress.

Thank you for you attention!

Any questions?