Photon Beam Asymmetry Measurement

from the $\gamma n \rightarrow K^{+} \Sigma^{-}$Reaction

Edwin Munévar
Proyecto Curricular de Licenciatura en Física
Universidad Distrital Francisco José de Caldas, Bogotá-Colombia

Pawel Nadel-Turonski, Jerry Feldman

Jefferson Laboratory, The George Washington University

June 8, 2018

Content

Motivation

Previous analysis

This analysis

Conclusions

Nucleon Excited States

Approximate solutions

- Constituent quark model
- Lattice QCD

Experimentally

- Data
- PWA
- Reaction models
- Coupled channels

Nucleon Excited States

Approximate solutions

- Constituent quark model
- Lattice QCD

Experimentally
 - Data
 - PWA
 - Reaction models
 - Coupled channels

The underlying physics emerges from the comparison between the the spectrum extracted from experimental data and the "approximate" spectra obtained from the QCD approaches

Previous analysis: $\gamma n(p) \rightarrow K^{+} \Sigma^{-}(p)$

LEPS SPring-8 Data: current existing data for beam asymmetry Inclusive analysis: only K^{+}detected

$M M\left(K^{+}\right)$off $L H_{2}$ and $L D_{2}$

Beam asymmetry Σ

- $M_{D}=\left(M_{p}+M_{n}\right) / 2$
$-\left.\frac{N\left(\Sigma^{0}\right)}{N(\Lambda)}\right|_{L D_{2}}=\left.\frac{N\left(\Sigma^{0}\right)}{N(\Lambda)}\right|_{L H_{2}}$

- $E_{\gamma}=1.5-2.4 \mathrm{GeV}: 9$ bins
- $0.6<\cos \theta_{K^{+}}^{C M}<1.0$: 4 bins

JLab: g13 CLAS run period

Polarized photon beam

Circular (g13a) and linear (g13b) polarization

Photon energy range

0.8-2.5 GeV, 1.1-2.3 GeV

Target

Liquid Deuterium (40-cm length)

Triggers

About a total of 52 billion triggers

JLab: CLAS Detector

- Six azimuthal spectrometers (5m radius)
- Start Counter (10 cm radius)
- Drift Chambers (3 regions)
- $\sigma_{p} / p=0.1 \%$
- $\sigma_{\theta}=0.5 \mathrm{mrad}$
- $\sigma_{\varphi}=3 \mathrm{mrad}$
- Superconducting Toroidal Magnet
- Time-of-Flight Scintillators
- Electromagnetic Calorimeter

This analysis: $\gamma n(p) \rightarrow K^{+} \Sigma^{-}(p) \quad \Sigma^{-} \rightarrow \pi^{-}$

CLAS g13b Data: beam asymmetry over a wider angular coverage
Exclusive analysis: K^{+}, π^{-}, n detected

Analysis strategy:

- Particle-ID
- Quasi-free reaction
- Background subtraction
- Beam asymmetry extraction

CORRECTIONS:

- Momentum corrections
- Energy loss corrections
- Σ^{-}decay vertex correction

Particle-ID: π^{-}(top) and K^{+}(bottom)

$$
\Delta \beta=\beta_{\text {calc }}-\beta_{\text {meas }}(3-\sigma \text { cuts })
$$

$\Delta \beta$ cuts
 - $\Delta \beta=\beta_{\text {calc }}-\beta_{\text {meas }}$

$$
\beta_{\text {calc }}=\frac{p}{\sqrt{p^{2}+m^{2}}}
$$

- p : reconst. momentum
- m: PDG mass
$\beta_{\text {meas }}$ is reconstructed in the CLAS sotfware

Particle-ID: neutron

β distribution

Neutron detection

Signal in the Calorimeter (EC)

Interaction layer in EC

- From $\gamma d \rightarrow \pi^{+} \pi^{-} \mathrm{p} n$

neutron vertex

- $c \tau_{\Sigma^{-}} \approx 4.4 \mathrm{~cm}$

Particle-ID: incident photon selection

Best photon: $\Delta T=T_{\gamma}-T_{K^{+}}$

T_{γ} : Photon arrival time (tagger)

$T_{K^{+}}$: Photon arrival time (TOF)

Multiple-good-photon events rejected ($\approx 2.85 \%$)

Quasi-free reaction

The reaction studied experimentally corresponds to $\gamma d \rightarrow K^{+} \Sigma^{-} p$ rather than to $\gamma n \rightarrow K^{+} \Sigma^{-}$

Quasi-free events $P_{\text {miss }} \leq 0.150 \mathrm{GeV} / \mathrm{c}$

Rescattering events

```
Pmiss}>0.150 GeV/
```


Background Subtraction

Correlated background $\gamma d \rightarrow K^{+} \Sigma^{-} \pi^{0}(p)$

- Strategy: cut

Uncorrelated background

- Strategy: fit

Background Subtraction

Beam Asymmetry Extraction Σ

- Two photon polarization planes:
- Horizontal (PARA)
- Vertical (PERP)
- Six photon energy settings
- Two methods used to extract Σ :
- Method of moments
- ϕ-bin method

$\begin{aligned} & \text { Electron energy } \\ & \text { beam }(\mathrm{GeV}) \end{aligned}$	Photon energy beam (GeV)	Mean polarization (\%)		
		PARA $P_{\\|}$	PERP P_{\perp}	
3.302, 3.914, 4.192	1.1-1.3	0.75	0.71	
4.065, 4.475	1.3-1.5	0.70	0.74	
4.065, 4.748	1.5-1.7	0.71	0.73	
5.057	1.7-1.9	0.74	0.78	
5.057	1.9-2.1	0.70	0.70	
5.157	2.1-2.3	0.71	0.71	

Beam Asymmetry: Method of moments

- Method of moments:

$$
\Sigma=\frac{2\left(F_{R} Y_{\perp 2}-Y_{\| 2}\right)}{F_{R} P_{\|}\left(Y_{\perp 0}+Y_{\perp 4}\right)+P_{\perp}\left(Y_{\| 0}+Y_{\| 4}\right)}
$$

$F_{R}=\frac{F_{\|}}{F_{\perp}}:$ flux ratio;

$$
Y_{\|, \perp 0}, Y_{\|, \perp 2} \text {, and } Y_{\|, \perp 4}: 0,2 \text {, and 4th moments; }
$$

$$
\begin{aligned}
& Y_{(\perp, \|) 0}=\sum_{i=1}^{N} 1 \\
& Y_{(\perp, \|) m}=\sum_{i=1}^{N} \cos \left(m \phi_{i}\right)
\end{aligned}
$$

Beam Asymmetry: Method of moments

- Method of moments:

$$
\Sigma=\frac{2\left(F_{R} Y_{\perp 2}-Y_{\| 2}\right)}{F_{R} P_{\|}\left(Y_{\perp 0}+Y_{\perp 4}\right)+P_{\perp}\left(Y_{\| 0}+Y_{\| 4}\right)}
$$

$F_{R}=\frac{F_{\|}}{F_{\perp}}:$ flux ratio;

$$
\begin{gathered}
Y_{\|, \perp 0}, Y_{\|, \perp 2} \text {, and } Y_{\|, \perp 4}: 0, \text { 2, and 4th moments; } \\
Y_{(\perp, \|) 0}=\sum_{i=1}^{N} 1 \\
Y_{(\perp, \|) m}=\sum_{i=1}^{N} \cos \left(m \phi_{i}\right)
\end{gathered}
$$

Optimal for low-statistics channels: no need to bin in ϕ

Beam Asymmetry: ϕ-bin method

- ϕ-bin method:

$$
N(\phi)_{\perp, \|} \sim A(\phi) F_{\perp, \|}\left(1 \pm P_{\perp, \|} \Sigma \cos 2\left(\phi+\phi_{0}\right)\right) \quad \text { PERP, PARA distribution }
$$

$$
\frac{N(\phi)_{\perp}-N(\phi)_{\|}}{N(\phi)_{\perp}+N(\phi)_{\|}}=\frac{\left(1-F_{R}\right)+\left(\frac{1+F_{R} P_{R}}{1+P_{R}}\right) 2 \Sigma \bar{P} \cos 2\left(\phi+\phi_{0}\right)}{\left(1+F_{R}\right)+\left(\frac{1-F_{R} P_{R}}{1+P_{R}}\right) 2 \Sigma \bar{P} \cos 2\left(\phi+\phi_{0}\right)}
$$

$\bar{P}=\frac{P_{\|}+P_{\perp}}{2}:$ mean polarization; $\quad \phi_{0}:$ offset $P_{R}=\frac{P_{\| I}}{P_{\perp}}:$ polarization ratio
F_{R} and ϕ_{0} determined from high statistics (i.e.single π channels)

Beam Asymmetry: ϕ-bin method

- ϕ-bin method:

$$
N(\phi)_{\perp, \|} \sim A(\phi) F_{\perp, \|}\left(1 \pm P_{\perp, \|} \Sigma \cos 2\left(\phi+\phi_{0}\right)\right) \quad \text { PERP, PARA distribution }
$$

$$
\frac{N(\phi)_{\perp}-N(\phi)_{\|}}{N(\phi)_{\perp}+N(\phi)_{\|}}=\frac{\left(1-F_{R}\right)+\left(\frac{1+F_{R} P_{R}}{1+P_{R}}\right) 2 \Sigma \bar{P} \cos 2\left(\phi+\phi_{0}\right)}{\left(1+F_{R}\right)+\left(\frac{1-F_{R} P_{R}}{1+P_{R}}\right) 2 \Sigma \bar{P} \cos 2\left(\phi+\phi_{0}\right)}
$$

$\bar{P}=\frac{P_{\|}+P_{\perp}}{2}:$ mean polarization; $\quad \phi_{0}:$ offset $P_{R}=\frac{P_{\|}}{P_{\perp}}:$ polarization ratio
F_{R} and ϕ_{0} determined from high statistics (i.e.single π channels)
Σ is determined from the fit parameter $\Sigma \bar{p}$: need to bin in ϕ

Systematics on the asymmetry

Summary of systematics in Σ

- Polarization: about 5\%
- Σ extraction method: about 2\%
- $\Delta \beta_{\pi^{-}}$cut: $<1 \%$
- $\Delta \beta_{K^{+}}$cut: $<1 \%$
- ΔT_{γ} cut: $<1 \%$
- Correlated background cut: < 1%

Preliminary beam asymmetry for $\gamma \boldsymbol{n} \rightarrow K^{+} \Sigma^{-}$

Photon energy setting: 1.7-1.9 GeV

Preliminary beam asymmetry for $\gamma n \rightarrow K^{+} \Sigma^{-}$

Photon energy setting: 1.9-2.1 GeV

Preliminary beam asymmetry for $\gamma n \rightarrow K^{+} \Sigma^{-}$

Photon energy setting: 2.1-2.3 GeV

Conclusions

- The preliminary asymmetries indicate CLAS results agree well with LEPS results.
- The results of this work will provide new high-quality beam-asymmetry data for N^{\star} resonances built on the neutron that decay into strange channels.
- These data will be important input for the global fits:
- For instance, efforts at JLab

Thank you!

BACKUP SLIDES

Particle-ID: neutron ($\vec{R}_{E C}$ global correction)

- Neutrons can interact anywhere inside the EC
- Systematic shift can be corrected from $\gamma d \rightarrow \pi^{+} \pi^{-} p n$

Particle-ID: neutron (\vec{V}_{n} correction)

- The non-negligible mean decay path of the Σ^{-}requires an algorithm to correct for the decay vertex location
- Σ^{-}should have decayed somewhere along the π^{-}path

Particle-ID: neutron (\vec{V}_{n} correction)

Σ^{-}path and lifetime

Σ^{-}vertex

