Photon Beam Asymmetry Measurement from the $\gamma n \rightarrow K^+ \Sigma^-$ Reaction

Edwin Munévar

Proyecto Curricular de Licenciatura en Física

Universidad Distrital Francisco José de Caldas, Bogotá-Colombia

Pawel Nadel-Turonski, Jerry Feldman

Jefferson Laboratory, The George Washington University

June 8, 2018

Motivation

Previous analysis

This analysis

Conclusions

Edwin Munévar - Universidad Distrital, Bogotá - Colombia | MESON 2018, June 7 - 12, Kraków, Poland

Nucleon Excited States

Approximate solutions

- Constituent quark model
- Lattice QCD

Experimentally

- Data
- PWA
- Reaction models
 - Coupled channels

Nucleon Excited States

The underlying physics emerges from the comparison between the the spectrum extracted from experimental data and the "approximate" spectra obtained from the QCD approaches

Previous analysis: $\gamma n(p) \rightarrow K^+ \Sigma^-(p)$

LEPS SPring-8 Data: current existing data for beam asymmetry

Inclusive analysis: only K^+ detected

Beam asymmetry Σ

• 0.6<
$$\cos \theta_{K^+}^{CM}$$
 <1.0: 4 bins

Polarized photon beam

Circular (g13a) and linear (g13b) polarization

Photon energy range

0.8-2.5 GeV, 1.1-2.3 GeV

Target

Liquid Deuterium (40-cm length)

Triggers

About a total of 52 billion triggers

JLab: CLAS Detector

- Six azimuthal spectrometers (5m radius)
- Start Counter (10cm radius)
- Drift Chambers (3 regions)
 - ▶ σ_p/p=0.1%
 - σ_θ=0.5 mrad
 - *σ*_φ=3 mrad
- Superconducting Toroidal Magnet
- Time-of-Flight Scintillators
- Electromagnetic Calorimeter

This analysis:
$$\gamma n(p) \rightarrow K^+ \Sigma^-(p)$$

CLAS g13b Data: beam asymmetry over a wider angular coverage

 $\Sigma^-
ightarrow \pi^-$

Edwin Munévar - Universidad Distrital, Bogotá - Colombia | MESON 2018, June 7 - 12, Kraków, Poland

This analysis: $\gamma n(p) \rightarrow K^+ \Sigma^-(p)$

 $\Sigma^- o \pi^-$ r

Analysis strategy:

- Particle-ID
- Quasi-free reaction
- Background subtraction
- Beam asymmetry extraction

CORRECTIONS:

- Momentum corrections
- Energy loss corrections
- Σ⁻ decay vertex correction

Particle-ID: π^- (top) and K^+ (bottom)

 $\Delta\beta \text{ cuts}$ $\Delta\beta = \beta_{calc} - \beta_{meas}$ $\beta_{calc} = \frac{p}{\sqrt{p^2 + m^2}}$ p: reconst. momentum m: PDG mass

β_{meas} is reconstructed in the CLAS sotfware

Particle-ID: neutron

Edwin Munévar - Universidad Distrital, Bogotá - Colombia | MESON 2018, June 7 - 12, Kraków, Poland

Particle-ID: incident photon selection

 T_{γ} : Photon arrival time (tagger)

 T_{K^+} : Photon arrival time (TOF)

Multiple-good-photon events rejected (\approx 2.85 %)

Quasi-free reaction

The reaction studied experimentally corresponds to $\gamma d \rightarrow K^+ \Sigma^- p$ rather than to $\gamma n \rightarrow K^+ \Sigma^-$

Background Subtraction

Correlated background $\gamma d \rightarrow K^+ \Sigma^- \pi^0(p)$

Strategy: cut

Uncorrelated background $\gamma d \rightarrow \pi^+ \pi^- np$

Strategy: fit

Background Subtraction

Beam Asymmetry Extraction Σ

- Two photon polarization planes:
 - Horizontal (PARA)
 - Vertical (PERP)
- Six photon energy settings
- Two methods used to extract Σ:
 - Method of moments
 - ▶ φ-bin method

Electron energy	Photon energy	Mean polarization (%)	
beam (GeV)	beam (GeV)	Para P _{II}	PERP P_{\perp}
3.302, 3.914, 4.192	1.1-1.3	0.75	0.71
4.065, 4.475	1.3-1.5	0.70	0.74
4.065, 4.748	1.5-1.7	0.71	0.73
5.057	1.7-1.9	0.74	0.78
5.057	1.9-2.1	0.70	0.70
5.157	2.1-2.3	0.71	0.71

Edwin Munévar - Universidad Distrital, Bogotá - Colombia | MESON 2018, June 7 - 12, Kraków, Poland

Beam Asymmetry: Method of moments

$$\Sigma = \frac{2\left(F_{R} Y_{\perp 2} - Y_{\parallel 2}\right)}{F_{R}P_{\parallel}(Y_{\perp 0} + Y_{\perp 4}) + P_{\perp}(Y_{\parallel 0} + Y_{\parallel 4})}$$

$$F_{R} = \frac{F_{\parallel}}{F_{\perp}}: \text{ flux ratio }; \qquad Y_{\parallel, \perp 0}, Y_{\parallel, \perp 2}, \text{ and } Y_{\parallel, \perp 4}: \text{ [0, 2, and 4th moments]}$$

$$egin{aligned} Y_{\scriptscriptstyle{(\perp,\parallel)0}} &= \sum_{i=1}^N 1 \ Y_{\scriptscriptstyle{(\perp,\parallel)m}} &= \sum_{i=1}^N cos(m\phi_i) \end{aligned}$$

Beam Asymmetry: Method of moments

$$\Sigma = \frac{2\left(F_{R}Y_{\perp 2} - Y_{\parallel 2}\right)}{F_{R}P_{\parallel}(Y_{\perp 0} + Y_{\perp 4}) + P_{\perp}(Y_{\parallel 0} + Y_{\parallel 4})}$$

$$F_{R} = \frac{F_{\parallel}}{F_{\perp}}: \text{ [flux ratio]}; \qquad Y_{\parallel, \perp 0}, Y_{\parallel, \perp 2}, \text{ and } Y_{\parallel, \perp 4}: \text{ [0, 2, and 4th moments]}$$

$$\begin{split} Y_{\scriptscriptstyle{(\perp,\parallel)0}} &= \sum_{i=1}^N 1\\ Y_{\scriptscriptstyle{(\perp,\parallel)m}} &= \sum_{i=1}^N cos(m\phi_i) \end{split}$$

Optimal for low-statistics channels: no need to bin in ϕ

Beam Asymmetry: ϕ -bin method

φ-bin method:

 $N(\phi)_{\perp,\parallel} \sim A(\phi)F_{\perp,\parallel}(1 \pm P_{\perp,\parallel}\Sigma \cos 2(\phi + \phi_0))$ PERP, PARA distribution

$$\overline{P} = \frac{P_{\parallel} + P_{\perp}}{2}: \boxed{\text{mean polarization}}; \qquad \phi_0: \boxed{\text{offset}} P_R = \frac{P_{\parallel}}{P_{\perp}}: \boxed{\text{polarization ratio}}$$

 F_{R} and ϕ_{0} determined from high statistics (*i.e.*single π channels)

Beam Asymmetry: ϕ -bin method

φ-bin method:

Ē

 $N(\phi)_{\perp,\parallel} \sim A(\phi)F_{\perp,\parallel}(1 \pm P_{\perp,\parallel}\Sigma \cos 2(\phi + \phi_0))$ PERP, PARA distribution

$$\frac{N(\phi)_{\perp} - N(\phi)_{\parallel}}{N(\phi)_{\perp} + N(\phi)_{\parallel}} = \frac{(1 - F_R) + \left(\frac{1 + F_R P_R}{1 + P_R}\right) 2\Sigma \bar{P} \cos 2(\phi + \phi_0)}{(1 + F_R) + \left(\frac{1 - F_R P_R}{1 + P_R}\right) 2\Sigma \bar{P} \cos 2(\phi + \phi_0)}$$
$$= \frac{P_{\parallel} + P_{\perp}}{2}: \boxed{\text{mean polarization}}; \qquad \phi_0: \boxed{\text{offset}} P_R = \frac{P_{\parallel}}{P_{\perp}}: \boxed{\text{polarization ratio}}$$

 F_{R} and ϕ_{0} determined from high statistics (*i.e.*single π channels)

 ${\tt \Sigma}$ is determined from the fit parameter ${\tt \Sigma}\bar{{\tt P}}$: need to bin in ϕ

Systematics on the asymmetry

17

Summary of systematics in $\boldsymbol{\Sigma}$

- Polarization: about 5%
- Σ extraction method: about 2%
- $\Delta \beta_{\pi^-}$ cut: < 1%
- ► Δβ_{K+} cut: < 1%</p>
- ΔT_{γ} cut: < 1%
- Correlated background cut: < 1%</p>

Preliminary beam asymmetry for $\gamma n \rightarrow K^+\Sigma^-$ Photon energy setting: 1.9-2.1 GeV

Conclusions

- The preliminary asymmetries indicate CLAS results agree well with LEPS results.
- ► The results of this work will provide new high-quality beam-asymmetry data for N* resonances built on the neutron that decay into strange channels.
- These data will be important input for the global fits:
 - For instance, efforts at JLab

Thank you!

Particle-ID: neutron (\vec{R}_{EC} global correction)

- Neutrons can interact anywhere inside the EC
- Systematic shift can be corrected from $\gamma d \rightarrow \pi^+ \pi^- pn$

Particle-ID: neutron (\vec{V}_n correction)

- The non-negligible mean decay path of the Σ⁻ requires an algorithm to correct for the decay vertex location
- Σ^- should have decayed somewhere along the π^- path

Particle-ID: neutron (\vec{V}_n correction)

 Σ^- vertex

