Meson transition form factor measurements with A2

15th International Workshop on Meson Physics

L. Heijkenskjöld

Institute for Nuclear Physics Johannes Gutenberg University Mainz June 2018

Introduction

$$\mathcal{A}(P \leftrightarrow \gamma^{(*)}\gamma^{(*)}) = q_1^{\mu} \varepsilon_1^{\nu} q_2^{\alpha} \varepsilon_2^{\beta} \epsilon_{\mu\nu\alpha\beta} \mathcal{F}_{P}(q_1^2, q_2^2)$$

- Intrinsic probe of the electromagnetic structure of the hadron
- Precise knowledge needed for calculations of a_{μ}^{SM}

From meson decays

Accessing the TFF — Momentum transfer spectrum of the decay rate

$$\frac{d\Gamma(A \to Be^+e^-)}{dq^2\Gamma(A \to B\gamma)} = [QED] \left| \frac{\mathcal{F}_{AB}(q^2)}{\mathcal{F}_{AB}(0)} \right|^2 = [QED] \left| F_{AB}(q^2) \right|^2$$

Compare results — VMD-inspired parametrisation

$$F(q^2) = \frac{\Lambda_V^2}{\Lambda_V^2 - q^2 - i\Gamma_V\Lambda_V} \stackrel{q^2 < \Lambda_V}{\approx} 1 + \Lambda^{-2}q^2$$

L. Heijkenskjöld - TFF with A2 - Introduction

The A2 setup

MAinzer MIkrotron (MAMI) — (un)polarised electron accelerator, $E_{max} = 1.6$ GeV.

L. Heijkenskjöld - TFF with A2 - Introduction

A2 TFF measurements

$$\pi^0
ightarrow e^+ e^- \gamma$$

 $F_{\pi^0}(q^2): \qquad \begin{array}{l} \text{Leading individual contribution to } a_{\mu}^{hLbL} \\ \text{Essential for precision of } \Gamma(\pi^0 \to e^+e^-) \end{array}$

A2 publication*

•
$$4 \cdot 10^5 \ \pi^0 \to e^+ e^- \gamma$$
 events
• $a_\pi = 0.003(1) \quad \left[\frac{a_\pi}{m_{\pi^0}^2} = \Lambda^{-2}\right]$

QED with radiative corrections[†]

^{*} A2, Phys.Rev. C95 (2017) no.2, 025202 T. Husek, K. Kampf, and J. Novotny , Phys. Rev. D 92, 054027 (2015).

Ongoing A2 project

Dedicated data collection,

5.5 more statistics

 \rightarrow reach current PDG precision

$$\eta
ightarrow e^+ e^- \gamma$$

 $F_{\eta}(q^2)$: With $\eta - \eta'$ mixing, tool for understanding light-quark dynamics

A2 publication*

- $5.4 \cdot 10^4$ signal events
- Systematic errors on individual data points

•
$$\Lambda^{-2} = 1.97 \pm 0.11_{tot}$$
 GeV $^{-2}$

* A2, Phys. Rev. C95 (2017), 035208

$$\eta' \to e^+ e^- \gamma$$

$F_{\eta'}(q^2)$: Covers the ho and ω poles

A2 ongoing project

 η^\prime initiative - 10 weeks of beam time with End Point Tagger

- More than 6 million η'
- Analysis of $\eta' \to e^+ e^- \gamma$ ongoing
- Cover range up to $q^2 pprox 0.7~{
 m GeV}^2$

$$\omega
ightarrow e^+ e^- \pi^0$$

$F_{\omega\pi^0}(q^2)$: Theory and experiment differences

A2 publication*

- 1100 signal events
- Systematic errors on individual data points

•
$$\Lambda^{-2}=1.99\pm0.21_{tot}$$
 GeV $^{-2}$

^{2.4} 2.2 ∕⊂ 1.8

Lepton-G

(1981)

NA60

(2009)

A2

(2016)

NA₆₀

(2016)

* A2, Phys. Rev. C95 (2017), 035208

Summary

Time-like transition form factors

$$P \rightarrow \gamma \ell^+ \ell^-$$

Good theory/experiment accord.

•
$$\pi^{\rm 0} \rightarrow e^+ e^- \gamma$$

•
$$\eta \rightarrow e^+ e^- \gamma$$

 $\bullet ~\eta' \to e^+ e^- \gamma$

 $V \to P \ell^+ \ell^- \label{eq:V}$ Theory - experiment disagreement.

•
$$\omega \to \pi^0 e^+ e^-$$

Time-like transition form factors

$$P \rightarrow \gamma \ell^+ \ell^-$$

Good theory/experiment accord.

$$V \rightarrow P \ell^+ \ell^-$$

Theory - experiment disagreement.

•
$$\pi^0 \rightarrow e^+ e^- \gamma$$

•
$$\eta \rightarrow e^+ e^- \gamma$$

$$\bullet ~\eta' \to e^+ e^- \gamma$$

•
$$\omega \to \pi^0 e^+ e^-$$

Thank you for your attention.