Polarization analysis of antiprotons produced in pA collisions

D. GRZONKA, FORSCHUNGSZENTRUM JÜLICH

CERN/PS P349

D. Alfs, D. Grzonka, F. Hauenstein*, K. Kilian, IKP, Forschungszentrum Jülich, 52425 Jülich, Germany D. Lersch, J. Ritman, T. Sefzick

B. Glowacz, P. Moskal, M. Zielinski	IP, Jagiellonian University, ul. Reymonta 4, PL-30 -059 Krakow, Poland
M. Diermaier, E. Widmann, J. Zmeskal	SMI für subatomare Physik, Boltzmanngasse 3, 1090 Wien, Austria
W. Oelert	Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
M. Wolke	Dep. of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
P. Nadel-Turonski	Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
M. Carmignotto, T. Horn,	PD, The Catholic University of America, 210 Hannan Hall, Washington, DC 20064
H. Mkrtchyan, A. Asaturyan, A. Mkrtchyan, V. Tadevosyan, S. Zhamkochyan	A. I. Alikhanyan Science Laboratory (Yerevan Physics Institute), Yerevan 0036, Armenia
S. Malbrunot-Ettenauer	CERN, Physics department
W. Eyrich, A. Zink	PI, Universität Erlangen, Erwin-Rommel-Strasse 1, 91058 Erlangen, Germany

*Present address: Old Dominion University, Norfolk, Virginia, USA

MESON 2018, June 8th, 2018

Polarization analysis of antiprotons produced in pA collisions

- Motivation
- Methods for polarized \overline{p} beam production
 - Λ-decay
 - Spin-filter method
 - Polarization in \overline{p} production ?
- Measurement of polarization CNI region
- P349 experiment
- Status of the analysis Drift chamber calibration DIRC analysis
- Summary and outlook

Motivation

Preparation of a polarized antiproton beam

High Energy: nucleon quark structure :					
logitudinal momentum distribution	on $f_1(x)$ pr D	The recise data $IS g_1(x)$			
transversity distribution	$h_1(x)$	PAX collaboration, arXiv 0904.2325 polarized p [nucl-ex] (2009)			
<u>Low Energy:</u> spin degree of freedom \rightarrow more detailed analyses possible					
e.g. : \overline{p} p annihilation at rest high density target \rightarrow stark mixing \rightarrow S-wave	possible states: ${}^{1}S_{0}$ singlet \swarrow ${}^{3}S_{1}$ triplet \bigstar	antiprotonic atom spectroscopy			

many ideas \rightarrow

mostly very low intensity or low polarization expected

or

calculations impossible and feasibility studies require large effort.

• hyperon decay,

- spin filtering,
- spin flip processes,
- stochastic techniques,
- dynamic nuclear polarization,
- spontaneous synchrotron radiation,
- induced synchrotron radiation,
- interaction with polarized photons,
- Stern-Gerlach effect,
- channeling,
- polarization of trapped antiprotons,antihydrogen atoms,
- polarization of produced antiprotons

see e.g:

A.D. Krisch, A.M.T. Lin and O. Chamberlain (edts), AIP Conf. Proc. 145 (1986)

E. Steffens, AIP Conf.Proc 1008, 1-5 (2008), AIP Conf.Proc.1149, 80-89 (2009)

H. O. Meyer, AIP Conf.Proc.1008, 124-131 (2008)

Antihyperon decay

$$\overline{\Lambda} \rightarrow \overline{p} + \pi^+ (63,9\%)$$

Decay makes \bar{p} with helicity h = - 0.64.

Lorentz boost creates transverse vector polarization.

Antihyperon decay

First and so far only experiment with **polarized 200 GeV p** at Fermilab.

 $\overline{\Lambda}$ production with primary 800 GeV/c proton beam.

At the end an average of 10⁴ polarized **p** s⁻¹ with 0.45 polarization

A. Bravar et al. Phys. Rev. Lett. 77, 2626 (1996)

being planned:

SPACHARM project at U-70 IHEP (Protvino)

Proton beam: 50 - 60 GeV/c, polarized antiproton beam: 15 - 45 GeV/c

Intensity: $(0.8 - 4.0) \times 10^4$ polarized p/cycle, polarization: 0.45

V. A. Okorokov et al., J.Phys.Conf.Ser. 938 (2017) no.1, 012014. I. I. Azhgirey et al., J. Phys.Conf. Ser. 798 (2017) 012177.

proposed method for FAIR \rightarrow PAX

(PAX collaboration, arXiv 0904.2325 [nucl-ex] (2009)

works in principle, protons at TSR (F. Rathmann et al., PRL 71, 1379 (1993))

Spin filtering

but enormous effort: separate filter storage ring (Sibirian snakes), filter time $T \approx 2\tau$ (beam life time) and COSY (W. Augustyniak et al., PLB 718 64-69 (2012))

to be confirmed for antiprotons !

Polarization in **p** Production ?

simplest method (if production polarized)

first step: check antiproton polarisation

Use the antiproton factory (nearly) as usual.

Cut one side in the horizontal angular distribution Cut up and down angles Avoid pure s wave antiprotons

In addition avoid depolarisation in the cooler synchrotron

Measurement of Polarization

- Production of \overline{p} under useful conditions

 \overline{p} momentum ≈ 3.5 GeV/c (\overline{p} production at AD and future FAIR facility) no s-wave production ($\theta_{lab} > 56$ mrad) \Rightarrow T11: \overline{p} momentum ≤ 3.5 GeV/c (≤ ± 5%)

production angle = $150 \text{ mr} (\pm 3 \text{mrad h}, \pm 10 \text{mrad v})$

• Measure transverse polarization via elastic \overline{p} p scattering

 ϕ - distribution of the scattering of produced \overline{p} in an analyzer target

 $d\sigma/(d\theta d\phi) = d\sigma/d\theta (1 + A_y * P * cos(\phi))$ determination of polarization P requires knowledge of $A_y \Rightarrow$ CNI region

CERN/PS testbeam east area

Ay in the CNI Area

			$d\sigma$	
helicity frame:	$\phi_1(s,t) = \langle +\frac{1}{2} + $	$\frac{1}{2} \phi + \frac{1}{2} + \frac{1}{2},$	$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \sim \phi_1 ^2 + \phi_2 ^2 + \phi_3 $	$ ^{2} + \phi_{4} ^{2} + 4 \phi_{5} ^{2}$
	$\phi_2(\mathbf{s},\mathbf{t}) = \langle +\frac{1}{2} + \cdot \rangle$	$\frac{1}{2} \phi - \frac{1}{2} - \frac{1}{2},$	Ay $\frac{\mathrm{d}\sigma}{\mathrm{d}t} = -\mathrm{Im}\left[\left(\phi_1 + \phi_2 + \right)\right]$	$(\phi_{3} - \phi_{4}) \phi_{5}^{*}$]
	$\phi_3(s,t) = \langle +\frac{1}{2} - \cdot \rangle$	$\frac{1}{2} \phi + \frac{1}{2} - \frac{1}{2},$	$\phi_i = \phi_i^{had} + \phi_i^{em}$:	
	$\phi_4(\mathbf{s},\mathbf{t}) = \langle +\frac{1}{2} - \cdot \rangle$	$\frac{1}{2} \phi - \frac{1}{2} + \frac{1}{2},$	Ay $\frac{d\sigma}{dt} = (Ay \frac{d\sigma}{dt})^{had} + (Ay \frac{d\sigma}{dt})^{had}$	$(xy \frac{d\sigma}{dt})^{em} + (Ay \frac{d\sigma}{dt})^{int}$
	$\phi_5(\mathbf{s},\mathbf{t}) = \langle +\frac{1}{2} + \cdot \rangle$	$\frac{1}{2} \phi + \frac{1}{2} - \frac{1}{2}.$		
			interference of nuclear em spin-flip (due to m	non-spin-flip and agnetic moment)
for small t and high en (N. Akchurin et al., Pys. R	nergy: Rev. D 48, 3026 (1993)	, and ref. cited.)		
$A_y^{em}(t) = 0$ (single photon exchange assumed)		data for pp→p	data for $pp \rightarrow pp$,	
$A_y^{had}(t) \approx \sqrt{t/s}$ (negl	igible for t/s $\rightarrow 0$)		0.04	$P_p=100 \text{ GeV/c},$ ($\sqrt{s} = 13.7 \text{ GeV}$)
$A_y^{int}(t) = A_y^{int}(t_p)$	$\frac{4 (t/t_p)^{3/2}}{3 (t/t_p)^2 + 1}$	$t_p = \sqrt{3} (8\pi\alpha/\sigma_{tot})$ ≈ -0.003	0.03	H. Okada et al., PLB 638, 450 (2006)
$A_{y^{int}}(t_p) \approx \frac{\sqrt{3}}{4} (\mu-1)$	$\frac{\sqrt{t_p}}{m} \approx 0.046$	(μ : magnetic moment)	0.01 0 10 ⁻³ 10 ⁻² -t (Ge	•V/c) ²
\Rightarrow A _y \approx 4 for pp	4.6% , at t ≈ -0.0 o and $\overline{p}p$ (G-parity)	003 y)		

Mitglied der Helmholtz-Gemeinschaft

JÜLICH

Forschungszentrum

Ay in the CNI Area

preliminary calculations for pp → pp (J. Haidenbauer, priv. comm.) one-boson-exchange NN potential, potential parameters determined by fit to experimental NbarN data, (Phys.Rev.D89,114003 (2014)

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

 selection of unscattered particles: track fit including signals of all 3 DC's

- 2. reference track: track fit from DC1 signals
- 3. determine track resolution: track fit from DC2+DC3 signals

Forschungszentrum

Particle identification works requires more detailed analysis

Cherenkov photon generation in DIRC with GEANT4

 \implies position and track angle dependent distribution to be considered for particle ID determination

Summary and Outlook

- Data have been taken for the analysis of antiproton polarization
- Track reconstruction and particle identification works
- Data analysis is ongoing : fine tuning of DC calibration and positioning detailed DIRC analysis extraction of p scattering event and polarization determination
- additional measurement in July/August 2018 with improved detector setup

Detection system for the new measurement

