Preface	PWA method	Fit results	Conclusions	Backup slides
		000000000		

High spin resonances in the $\pi^+\pi^-\pi^-$ and $\pi^-\pi^0\pi^0$ systems at VES setup

Igor Kachaev, Dmitry Ryabchikov for VES group, Protvino, Russia

Institute for High Energy Physics, Protvino. E-mail Igor.Katchaev@ihep.ru

> MESON 2018 Krakow, Poland 8 June 2018

PWA meth

Preface

Fit results

Conclusions

Backup slides

Preface

Plan of the report

- Raw data.
- Two PWA methods
 - PWA with unlimited rank density matrix
 - PWA with rank 1 density matrix
- Comparison of the largest waves
- Waves for $J^P = 3^+$
- Waves for $J^P = 4^+$
- Conclusions

Conclusions

Raw data

- We have full featured magnetic spectrometer with 29 GeV/c π^- beam, Be target, $|t'| = 0 \dots 1 \; GeV^2/c^2$
- Two final states $\pi^+ 2\pi^-$ and $\pi^- 2\pi^0$
 - $33 \cdot 10^6$ events in $\pi^- \pi^0 \pi^0$ (leading statistics in the world)
 - $87 \cdot 10^6$ events in $\pi^+\pi^-\pi^-$ (leading statistics in the world)
- Here and below: blue line $\pi^+\pi^-\pi^-$ red line $\pi^-\pi^0\pi^0$

PWA method

Conclusions

Backup slides

PWA methods. Partial waves

PWA amplitudes are constructed using isobar model, sequential decay via $\pi\pi$ subsystem. Wave has quantum numbers $J^P L M^{\eta} R$ where J^P is spin-parity for 3π system, M^{η} is its projection of spin and naturality, R is the known resonance in $\pi\pi$ system, L is orbital momentum in $R\pi$ decay. For all 3π charged states $I^G = 1^-$.

PWA method

Fit results

Conclusions

Backup slides

PWA methods. Common part

- Amplitudes are non relativistic (in GJ frame)
- Resonanses are relativistic Breit-Wigners $R = f_0(980), \varepsilon(1300), f_0(1500), \rho(770), f_2(1270), \rho_3(1690)$ To describe $\pi\pi$ S-wave we use modified Au, Morgan, Pennnington M-solution with $f_0(980)$ withdrawn. We name it $\varepsilon(1300)$
- If we neglect phase space factors, due to GJ coefficients

$$R = \frac{\sigma(\pi^{-}\pi^{0}\pi^{0})}{\sigma(\pi^{+}\pi^{-}\pi^{-})} = \begin{cases} 1 & \text{for waves with } \rho(770), \ \rho_{3}(1690) \\ 1/2 & \text{for waves with } f_{0}(...), \ f_{2}(1270) \end{cases}$$

All waves in $\pi^{-}2\pi^{0}$ coupled to $\pi^{0}\pi^{0}$ have factor 1/2To simplify comparison, they are scaled 2x.

• Below we use blue line for $\pi^+\pi^-\pi^-$, red line for $\pi^-\pi^0\pi^0$

PWA methods. The difference

PWA with full rank density matrix

- Amplitudes use d-functions (Hansen, Illinois PWA)
- fit parameters are elements of positive definite density matrix. Small number of waves are 100% coherent with each other. This fit is named full matrix below.
- Coherent part of the density matrix is the largest part of the matrix which has rank 1 and behaves like vector of amplitudes. It corresponds to the largest eigenvalue of density matrix. Named LEV below.

PWA with rank one density matrix

- Amplitudes use tensors (Zemach)
- Fit parameters are coupling coefficients this is the same as rank one matrix. This fit is named rank 1 below.

Wave $1^+S0^+\rho$ for $\pi^+2\pi^-$ and $\pi^-2\pi^0$

Largest waves in $\pi^+2\pi^-$ for full rank, LEV, rank 1

Largest waves in $\pi^{-}2\pi^{0}$ for full rank, LEV, rank 1

Conclusions

Waves 3^+ for $\pi^+ 2\pi^-$

Clean resonant behavior is seen in $\rho_3\pi$ in all 3 methods. For $f_2\pi$ and $\rho\pi$ bumps are shapeless and shifted. For $\varepsilon\pi$ only coherent methods win; full density matrix contains garbage.

Preface

Conclusions

Waves 3^+ for $\pi^- 2\pi^0$

Clean resonant behavior is seen in $\rho_3 \pi$ only, in all 3 methods. System $\pi^- 2\pi^0$ suffers from 2x smaller acceptance and 2x smaller CG coefficient for $f_2\pi$ and $\varepsilon\pi$ waves.

Fits $3^+S0^+\rho_3$ for $\pi^+2\pi^-$, all t' ranges

Fit in 6 |t'| ranges 0–0.015–0.033–0.060–0.090-0.200-1.000 GeV/c^2 Fit parameters are separate for all |t'| bins. Fit is reasonably stable vrt |t'|.

Green line — relativistic Breight-Wigner Blue line — phase space background with exponential dumping Red line — summary

Waves 4^+ for $\pi^+2\pi^-$

Resonant behavior is seen in both waves and all 3 methods.

Waves 4^+ for $\pi^- 2\pi^0$

Resonant behavior is seen in both waves and all 3 methods.

Preface	PWA method	Fit results	Conclusions	Backup slides
		00000000000		

Distribution over |t'| for 4+ waves for $\pi^+ 2\pi^-$

Special rank 1 fit with 10 t' ranges is done here. Distributions over |t|' for both 4^+ waves looks simular. Gap at |t'| = 0 is expected for waves with |M| = 1.

Preface

Fit results ○○○○○○○○○●

Branching ratio $4^+G1^+\rho$ vs $4^+D1^+f_2$ for $\pi^+2\pi^-$ vs t'

Branching ratio $f_2\pi_D$ vs $\rho\pi_G$ is stable with respect to |t'|

PWA metho

Fit results

Conclusions

Conclusions

- Mass-independent PWA is done for $\pi^+\pi^-\pi^-$ and $\pi^-\pi^0\pi^0$ data with both unlimited rank and rank 1 PWA models. Results for for both systems and both methods coinside without additional normalization. The best coinsidence is between coherent part of density matrix and rank 1 results. Background looks suppressed in these methods w.r.t. full rank density matrix.
- Parameters of $a_3(1875)$ (PDG status not confirmed) are measured. For $3^+S0^+\rho_3\pi$ in both $\pi^+\pi^-\pi^-$ and $\pi^-\pi^0\pi^0$

$$M = 1905 \pm 15 \,\mathrm{GeV/c^2}$$
 $G = 250 \pm 30 \,\mathrm{GeV/c^2}$

No resonant behavior is found in $f_2\pi$ and $\rho\pi$ states. For $\varepsilon\pi$ state activity in coherent part of d.m. is seen in $\pi^+2\pi^-$ but not in $\pi^-2\pi^0$. State $\varepsilon\pi$ in $\pi^-2\pi^0$ suffers from 2x smaller acceptance and 2x smaller cross section due to CG coefficient. PWA method

Fit results

Conclusions

Backup slides

Conclusions (cont'd)

• Decay of $a_4(2050)$ into $\pi^+\pi^-\pi^-$ and $\pi^-\pi^0\pi^0$ is seen. In $\rho\pi_G$ and $f_2\pi_F$ final states and both $\pi^+\pi^-\pi^-$ and $\pi^-\pi^0\pi^0$

$$M = 1980 \pm 10 \,\text{GeV/c}^2 \quad G = 260 \pm 20 \,\text{GeV/c}^2$$
$$\frac{\sigma(a_4 \rightarrow f_2 \pi_F)}{\sigma(a_4 \rightarrow \rho \pi_G)} = 0.50 \pm 0.05$$

Preface	PWA method	Fit results 000000000	Conclusions

Backup slides

Backup slides

Preface

Fit results

Conclusions

Backup slides

Wave set used in the analysis

J^P	$J^P L M^\eta R$				
FLAT	FLAT				
0-	$0^{-}s0^{+}\varepsilon$				
	$0^{-}s0^{+}f_{0}$	0^{-} s 0^{+} f $_{0}(1500)$			
	$0^{-}P0^{+}\rho$				
1+	$1^{+}s0^{+}\rho$				
	$1^+P0^+\varepsilon$				
	$1^+ D0^+ \rho$	$1^{+}P0^{+}f_{0}$			
	$1^{+}P0^{+}f_{2}$				
	$1^{+}s1^{+}\rho$				
	$1^+P1^+\varepsilon$				
	$1^{+}s1^{-}\rho$				
1-	$1^{-}P1^{+}\rho$				
	$1^{-}P0^{-}\rho$				
	$1^{-}P1^{-}\rho$				
2-	2^{-} s 0^{+} f ₂				
	$2^- D0^+ \varepsilon$	2^{-} D 0^{+} f ₂	$2^{-}P0^{+}\rho_{3}$		
	$2^{-}P0^{+}\rho$	$2^{-}F0^{+}\rho$	$2^{-}D0^{+}f_{0}$		
	2^{-} s 1^{+} f ₂	$2^{-}D1^{+}\varepsilon$	2^- D 1^+ f $_{2}$	2^{-} P 1^{+} ρ	$2^{-}F1^{+}\rho$
	$2^{-}S1^{-}f_{2}$				
2+	$2^{+}D1^{+}\rho$	$2^+ P 1^+ f_2$			
	$2^+ D 0^- \rho$				
	2^{+} D 1^{-} ρ				
3+	$3^+s0^+\rho_3$	3^+ P 0^+ f ₂			
	$3^+ D0^+ \rho$	3^+ F $0^+ \varepsilon$			
	$3^+ D 1^+ \rho$				
4^{-}	$4^{-}F0^{+}\rho$				
4+	$4^{+}F1^{+}f_{2}$	$4^{+}G1^{+}\rho$			

Preface

PWA method

Fit results

Conclusions

Backup slides

PWA with full rank ρ . Maximum LK method

$$\ln \mathcal{L} = \sum_{e=1}^{N_{ev}} \ln \sum_{i,j=1}^{N_w} C_{k(i)} R_{m(i)m(j)} C_{k(j)}^* \mathcal{M}_i(\tau_e) \mathcal{M}_j^*(\tau_e)$$
$$- N_{ev} \sum_{i,j=1}^{N_w} C_{k(i)} R_{m(i)m(j)} C_{k(j)}^* \int \varepsilon(\tau) \mathcal{M}_i(\tau) \mathcal{M}_j^*(\tau) d\tau$$

- N_{ev} number of events, N_w number of waves
- $\mathcal{M}(au_e)$ amplitudes for e-th event (data)
- R positive definite density matrix (parameters)
- *C* coupling coefficients, constants)
- + m(i), k(i) describes wave to C and R correspondence
- $\tau = s, t, m(3\pi), \ldots$ phase space variables
- arepsilon(au) acceptance of the setup

Preface	PWA method	Fit results	Conclusions	Backup slides
		000000000		

PWA with rank one ρ . Maximum LK method

$$\ln \mathcal{L} = \sum_{e=1}^{N_{ev}} \ln \sum_{i,j=1}^{N_w} C_{k(i)} C_{k(j)}^* \mathcal{M}_i(\tau_e) \mathcal{M}_j^*(\tau_e)$$
$$- N_{ev} \sum_{i,j=1}^{N_w} C_{k(i)} C_{k(j)}^* \int \varepsilon(\tau) \mathcal{M}_i(\tau) \mathcal{M}_j^*(\tau) \, d\tau$$

- N_{ev} number of events, N_w number of waves
- $\mathcal{M}(\tau_e)$ amplitudes for *e*-th event (data)
- C coupling coefficients (parameters)
- k(i) describes wave to C correspondence
- $\tau = s, t, m(3\pi), \ldots$ phase space variables
- $\varepsilon(\tau)$ acceptance of the setup

PWA metho

Fit results

Conclusions

Backup slides

Coherent part of density matrix

Coherent part of the density matrix R is the largest part of the matrix which has rank 1 and behaves like vector of amplitudes. Let

$$R = \sum_{k=1}^{d} e_k * V_k * V_k^+ \quad \text{where} \quad \left\{ \begin{array}{l} e_k \text{ is } \mathsf{k}\text{-}th \text{ eigenvalue} \\ V_k \text{ is } \mathsf{k}\text{-}th \text{ eigenvector} \end{array} \right.$$

Let $e_1 \gg e_2 > \ldots > e_d > 0$. Now

$$R = R_L + R_S$$
, $R_L = e_1 * V_1 * V_1^+$, $R_S = \sum_{k=2}^d e_k * V_k * V_k^+$

Part R_L corresponds to largest eigenvalue (LEV) of R (coherent part of R) while R_S is the rest, incoherent part of R. This decomposition is stable w.r.t. variations of R matrix elements. Experience shows that resonances tend to concentrate in R_L .