High spin resonances in the $\pi^{+} \pi^{-} \pi^{-}$and $\pi^{-} \pi^{0} \pi^{0}$ systems at VES setup

Igor Kachaev, Dmitry Ryabchikov for VES group, Protvino, Russia

Institute for High Energy Physics, Protvino. E-mail Igor.Katchaev@ihep.ru

MESON 2018
Krakow, Poland
8 June 2018

Preface

Plan of the report

- Raw data.
- Two PWA methods
- PWA with unlimited rank density matrix
- PWA with rank 1 density matrix
- Comparison of the largest waves
- Waves for $J^{P}=3^{+}$
- Waves for $J^{P}=4^{+}$
- Conclusions

Raw data

- We have full featured magnetic spectrometer with $29 \mathrm{GeV} / \mathrm{c} \pi^{-}$beam, Be target, $\left|t^{\prime}\right|=0 \ldots 1 \mathrm{GeV}^{2} / \mathrm{c}^{2}$
- Two final states $\pi^{+} 2 \pi^{-}$and $\pi^{-} 2 \pi^{0}$
- $33 \cdot 10^{6}$ events in $\pi^{-} \pi^{0} \pi^{0}$ (leading statistics in the world)
- $87 \cdot 10^{6}$ events in $\pi^{+} \pi^{-} \pi^{-}$(leading statistics in the world)
- Here and below: blue line $-\pi^{+} \pi^{-} \pi^{-}$red line $-\pi^{-} \pi^{0} \pi^{0}$

PWA methods. Partial waves

PWA amplitudes are constructed using isobar model, sequential decay via $\pi \pi$ subsystem. Wave has quantum numbers $J^{P} L M^{\eta} \mathrm{R}$ where J^{P} is spin-parity for 3π system, M^{η} is its projection of spin and naturality, R is the known resonance in $\pi \pi$ system, L is orbital momentum in $\mathrm{R} \pi$ decay. For all 3π charged states $I^{G}=1^{-}$.

PWA methods. Common part

- Amplitudes are non relativistic (in GJ frame)
- Resonanses are relativistic Breit-Wigners $R=f_{0}(980), \varepsilon(1300), f_{0}(1500), \rho(770), f_{2}(1270), \rho_{3}(1690)$
To describe $\pi \pi S$-wave we use modified Au, Morgan, Pennnington M-solution with $f_{0}(980)$ withdrawn. We name it $\varepsilon(1300)$
- If we neglect phase space factors, due to GJ coefficients
$R=\frac{\sigma\left(\pi^{-} \pi^{0} \pi^{0}\right)}{\sigma\left(\pi^{+} \pi^{-} \pi^{-}\right)}=\left\{\begin{array}{l}1 \quad \text { for waves with } \rho(770), \rho_{3}(1690) \\ 1 / 2 \text { for waves with } f_{0}(\ldots), f_{2}(1270)\end{array}\right.$
All waves in $\pi^{-} 2 \pi^{0}$ coupled to $\pi^{0} \pi^{0}$ have factor $1 / 2$
To simplify comparison, they are scaled $2 x$.
- Below we use blue line for $\pi^{+} \pi^{-} \pi^{-}$, red line for $\pi^{-} \pi^{0} \pi^{0}$

PWA methods. The difference

PWA with full rank density matrix

- Amplitudes use d-functions (Hansen, Illinois PWA)
- fit parameters are elements of positive definite density matrix. Small number of waves are 100% coherent with each other. This fit is named full matrix below.
- Coherent part of the density matrix is the largest part of the matrix which has rank 1 and behaves like vector of amplitudes. It corresponds to the largest eigenvalue of density matrix. Named LEV below.

PWA with rank one density matrix

- Amplitudes use tensors (Zemach)
- Fit parameters are coupling coefficients - this is the same as rank one matrix. This fit is named rank 1 below.

Wave $1^{+} S 0^{+} \rho$ for $\pi^{+} 2 \pi^{-}$and $\pi^{-} 2 \pi^{0}$

Blue $\pi^{+} 2 \pi^{-}$red $\pi^{-} 2 \pi^{0}$
Systems are comparable without additional normalization in all $\left|t^{\prime}\right|$ regions.

Largest waves in $\pi^{+} 2 \pi^{-}$for full rank, LEV, rank 1

Full matrix - blue LEV - red
rank 1 - green
Methods are comparable without additional normalization.

Largest waves in $\pi^{-} 2 \pi^{0}$ for full rank, LEV, rank 1

Full matrix - blue LEV - red
rank 1 - green
Methods are comparable without additional normalization.

Waves 3^{+}for $\pi^{+} 2 \pi^{-}$

3+S0 + RHO3

$3+\mathrm{DO}+\mathrm{RHO}(770)$

3+P0+F2(1270)

Clean resonant behavior is seen in $\rho_{3} \pi$ in all 3 methods. For $f_{2} \pi$ and $\rho \pi$ bumps are shapeless and shifted. For $\varepsilon \pi$ only coherent methods win; full density matrix contains garbage.

Waves 3^{+}for $\pi^{-} 2 \pi^{0}$

Clean resonant behavior is seen in $\rho_{3} \pi$ only, in all 3 methods. System $\pi^{-} 2 \pi^{0}$ suffers from $2 x$ smaller acceptance and 2 x smaller CG coefficient for $f_{2} \pi$ and $\varepsilon \pi$ waves.

Fits $3^{+} S 0^{+} \rho_{3}$ for $\pi^{+} 2 \pi^{-}$, all t^{\prime} ranges

Fit in $6\left|t^{\prime}\right|$ ranges 0-0.015-0.033-0.060-0.090-0.200-1.000 $\mathrm{GeV} / \mathrm{c}^{2}$ Fit parameters are separate for all $\left|t^{\prime}\right|$ bins. Fit is reasonably stable vrt $\left|t^{\prime}\right|$.

Green line - relativistic Breight-Wigner
Blue line - phase space background with exponential dumping Red line - summary

Waves 4^{+}for $\pi^{+} 2 \pi^{-}$

Resonant behavior is seen in both waves and all 3 methods.

$$
\text { Waves } 4^{+} \text {for } \pi^{-} 2 \pi^{0}
$$

Resonant behavior is seen in both waves and all 3 methods.

Distribution over $\left|t^{\prime}\right|$ for $4+$ waves for $\pi^{+} 2 \pi^{-}$

Special rank 1 fit with $10 t^{\prime}$ ranges is done here. Distributions over $|t|^{\prime}$ for both 4^{+}waves looks simular. Gap at $\left|t^{\prime}\right|=0$ is expected for waves with $|M|=1$.

Branching ratio $4^{+} G 1^{+} \rho$ vs $4^{+} D 1^{+} f_{2}$ for $\pi^{+} 2 \pi^{-}$vs t^{\prime}

Branching ratio $f_{2} \pi_{D}$ vs $\rho \pi_{G}$ is stable with respect to $\left|t^{\prime}\right|$

Conclusions

- Mass-independent PWA is done for $\pi^{+} \pi^{-} \pi^{-}$and $\pi^{-} \pi^{0} \pi^{0}$ data with both unlimited rank and rank 1 PWA models. Results for for both systems and both methods coinside without additional normalization. The best coinsidence is between coherent part of density matrix and rank 1 results. Background looks suppressed in these methods w.r.t. full rank density matrix.
- Parameters of $a_{3}(1875)$ (PDG status - not confirmed) are measured. For $3^{+} S 0^{+} \rho_{3} \pi$ in both $\pi^{+} \pi^{-} \pi^{-}$and $\pi^{-} \pi^{0} \pi^{0}$

$$
M=1905 \pm 15 \mathrm{GeV} / \mathrm{c}^{2} \quad G=250 \pm 30 \mathrm{GeV} / \mathrm{c}^{2}
$$

No resonant behavior is found in $f_{2} \pi$ and $\rho \pi$ states. For $\varepsilon \pi$ state activity in coherent part of d.m. is seen in $\pi^{+} 2 \pi^{-}$but not in $\pi^{-} 2 \pi^{0}$. State $\varepsilon \pi$ in $\pi^{-} 2 \pi^{0}$ suffers from $2 x$ smaller acceptance and $2 x$ smaller cross section due to CG coefficient.

Conclusions (cont'd)

- Decay of $a_{4}(2050)$ into $\pi^{+} \pi^{-} \pi^{-}$and $\pi^{-} \pi^{0} \pi^{0}$ is seen. In $\rho \pi_{G}$ and $f_{2} \pi_{F}$ final states and both $\pi^{+} \pi^{-} \pi^{-}$and $\pi^{-} \pi^{0} \pi^{0}$

$$
\begin{gathered}
M=1980 \pm 10 \mathrm{GeV} / \mathrm{c}^{2} \quad G=260 \pm 20 \mathrm{GeV} / \mathrm{c}^{2} \\
\frac{\sigma\left(a_{4} \rightarrow f_{2} \pi_{F}\right)}{\sigma\left(a_{4} \rightarrow \rho \pi_{G}\right)}=0.50 \pm 0.05
\end{gathered}
$$

Backup slides

Wave set used in the analysis

J^{P}	$J^{P} L M^{\eta} R$				
FLAT	FLAT				
0^{-}	$\begin{array}{ll} \mathbf{0}^{-} \mathrm{SO}^{+} \varepsilon & \\ \mathbf{0}^{-} \mathrm{SO}^{+} & \mathbf{f}_{\mathbf{0}} \\ \mathrm{o}^{-} \mathrm{PO}^{+} \rho \end{array} \quad \mathbf{0}^{-} \mathrm{SO}^{+} \mathbf{f}_{\mathbf{0}}(\mathbf{1 5 0 0})$				
1^{+}	$\begin{array}{ll} \mathbf{1}^{+} \mathrm{SO}^{+} \rho & \\ \mathbf{1}^{+} \mathbf{p}^{+} \varepsilon & \\ \mathbf{1}^{+} \mathbf{D O}^{+} \rho & \mathbf{1}^{+} \mathrm{PO}^{+} \mathbf{f}_{\mathbf{0}} \\ \mathbf{1}^{+} \mathbf{p}^{+} \mathbf{f}_{\mathbf{2}} & \\ \mathbf{1}^{+} \mathbf{S 1}^{+} \rho & \\ \mathbf{1}^{+} \mathbf{P}^{+}{ }_{\varepsilon}^{+} & \\ \mathbf{1}^{+} \mathbf{S 1}^{-} \rho & \\ \hline \end{array}$				
1^{-}	$\begin{aligned} & \mathbf{1}^{-} \mathrm{P}^{+}{ }^{-} \rho \\ & \mathbf{1}^{-} \mathrm{PO}^{-} \rho \\ & \mathbf{1}^{-} \mathrm{P}^{-}-\rho \end{aligned}$				
2^{-}	$\mathbf{2}^{-} \mathbf{S O}^{+} \mathbf{f}_{\mathbf{2}}$ $\mathbf{2}^{-} \mathbf{D O}^{+} \varepsilon$ $\mathbf{2}^{-} \mathbf{D O}^{+} \mathbf{f}_{\mathbf{2}}$ $\mathbf{2}^{-} \mathbf{P O}^{+} \rho_{\mathbf{3}}$ $\mathbf{2}^{-} \mathbf{P O}^{+} \rho$ $\mathbf{2}^{-} \mathbf{F O}^{+}{ }_{\rho}$ $\mathbf{2}^{-} \mathbf{D O}^{+} \mathbf{f}_{\mathbf{O}}$ $\mathbf{2}^{-} \mathbf{S 1}^{+} \mathbf{f}_{\mathbf{2}}$ $\mathbf{2}^{-} \mathbf{D 1}^{+}{ }_{\varepsilon}$ $\mathbf{2}^{-} \mathbf{D 1}^{+} \mathbf{f}_{\mathbf{2}}$ $\mathbf{2}^{-}{ }^{\mathbf{P} \mathbf{1}^{+}} \rho$ $\mathbf{2}^{-}{ }^{-} \mathbf{F 1}^{+} \rho$ $\mathbf{2}^{-} \mathbf{S 1}^{-} \mathbf{f}_{\mathbf{2}}$				
2^{+}	$\begin{array}{ll} \mathbf{2}^{+} \mathrm{D}^{+} \rho & \mathbf{2}^{+} \mathrm{P}^{+} \mathbf{f}_{\mathbf{2}} \\ \mathbf{2}^{+} \mathrm{DO}^{-} \rho & \\ \mathbf{2}^{+} \mathrm{D} 1^{-} \rho & \end{array}$				
3^{+}	$\mathbf{3}^{+} \mathbf{S O}^{+} \rho_{\mathbf{3}}$ $\mathbf{3}^{+}{ }^{+} \mathbf{P O}^{+} \mathbf{f}_{\mathbf{2}}$ $\mathbf{3}^{+} \mathbf{D O}^{+}{ }_{\rho}$ $\mathbf{3}^{+}{ }^{+} \mathbf{F O}^{+}{ }_{\varepsilon}$ $\mathbf{3}^{+}{ }^{\mathbf{D} \mathbf{1}^{+}}{ }^{+}$				
4^{-}	$4^{-} \mathrm{FO}^{+} \rho$				
4^{+}	$\mathbf{4}^{+} \mathrm{F1}^{+} \mathrm{f}_{\mathbf{2}} \quad \mathbf{4}^{+} \mathrm{G1}^{+}{ }^{+}$				

PWA with full rank ρ. Maximum LK method

$$
\begin{aligned}
\ln \mathcal{L} & =\sum_{e=1}^{N_{e v}} \ln \sum_{i, j=1}^{N_{w}} C_{k(i)} R_{m(i) m(j)} C_{k(j)}^{*} \mathcal{M}_{i}\left(\tau_{e}\right) \mathcal{M}_{j}^{*}\left(\tau_{e}\right) \\
- & N_{e v} \sum_{i, j=1}^{N_{w}} C_{k(i)} R_{m(i) m(j)} C_{k(j)}^{*} \int \varepsilon(\tau) \mathcal{M}_{i}(\tau) \mathcal{M}_{j}^{*}(\tau) d \tau
\end{aligned}
$$

- $N_{e v}$ - number of events, N_{w} - number of waves
- $\mathcal{M}\left(\tau_{e}\right)$ - amplitudes for e-th event (data)
- R - positive definite density matrix (parameters)
- C - coupling coefficients, constants)
- $m(i), k(i)$ - describes wave to C and R correspondence
- $\tau=s, t, m(3 \pi), \ldots$ - phase space variables
- $\varepsilon(\tau)$ - acceptance of the setup

PWA with rank one ρ. Maximum LK method

$$
\begin{aligned}
\ln \mathcal{L} & =\sum_{e=1}^{N_{e v}} \ln \sum_{i, j=1}^{N_{w}} C_{k(i)} C_{k(j)}^{*} \mathcal{M}_{i}\left(\tau_{e}\right) \mathcal{M}_{j}^{*}\left(\tau_{e}\right) \\
- & N_{e v} \sum_{i, j=1}^{N_{w}} C_{k(i)} C_{k(j)}^{*} \int \varepsilon(\tau) \mathcal{M}_{i}(\tau) \mathcal{M}_{j}^{*}(\tau) d \tau
\end{aligned}
$$

- $N_{e v}$ - number of events, N_{w} - number of waves
- $\mathcal{M}\left(\tau_{e}\right)$ - amplitudes for e-th event (data)
- C - coupling coefficients (parameters)
- $k(i)$ - describes wave to C correspondence
- $\tau=s, t, m(3 \pi), \ldots$ - phase space variables
- $\varepsilon(\tau)$ - acceptance of the setup

Coherent part of density matrix

Coherent part of the density matrix R is the largest part of the matrix which has rank 1 and behaves like vector of amplitudes. Let

$$
R=\sum_{k=1}^{d} e_{k} * V_{k} * V_{k}^{+} \quad \text { where } \quad\left\{\begin{array}{l}
e_{k} \text { is } \mathrm{k}-\text { th eigenvalue } \\
V_{k} \text { is } \mathrm{k} \text {-th eigenvector }
\end{array}\right.
$$

Let $e_{1} \gg e_{2}>\ldots>e_{d}>0$. Now

$$
R=R_{L}+R_{S}, \quad R_{L}=e_{1} * V_{1} * V_{1}^{+}, \quad R_{S}=\sum_{k=2}^{d} e_{k} * V_{k} * V_{k}^{+}
$$

Part R_{L} corresponds to largest eigenvalue (LEV) of R (coherent part of R) while R_{S} is the rest, incoherent part of R. This decomposition is stable w.r.t. variations of R matrix elements. Experience shows that resonances tend to concentrate in R_{L}.

